0! = 1 and if n > 0 then $n! = 1 \times 2 \times 3 \times ... \times n$

The *n***-th Term Test for Divergence**: $\sum a_n$ diverges if $\lim_{n \to \infty} a_n$ fails to exist or is different from zero.

The Limit Comparison Test: Let $\sum a_n$ and $\sum b_n$ be series with positive terms and suppose

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}$$

- a) If L is finite and L > 0, then the series both converge or both diverge.
- b) If L = 0 and $\sum b_n$ converges, then $\sum a_n$ converges.
- c) If $L = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Ratio Test: Let $\sum a_n$ be a series with nonzero terms and suppose $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.

- a) If $\rho < 1$, the series converges absolutely.
- b) If $\rho > 1$ or $\rho = \infty$, the series diverges.
- c) If $\rho = 1$, then the test is inconclusive, use a different test.

Alternating Series Test: An alternating series $\sum (-1)^n u_n$ or $\sum (-1)^{n+1} u_n$ converges if the following three conditions are satisfied:

1) $u_n > 0$ for all $n \ge N$ 2) $\lim_{n \to \infty} u_n = 0$ 3) $u_n \ge u_{n+1}$ for all $n \ge N$ for some N