Day 1: Review $C h 3$ \& 4

* Review Sec 3.1 Tangent Lines
3.3 Quotient Rule

Ex: Find the tangent lines to $y=-\frac{2 x}{x^{2}+1}$ at the origin and at the point $(1,-1)$.

Answer: $\quad y=-2\left(\frac{x}{x^{2}+1}\right)$

$$
\begin{aligned}
y^{\prime} & =-2\left[\frac{\left(x^{2}+1\right) 1-x(2 x)}{\left(x^{2}+1\right)^{2}}\right] \\
& =-2\left[\frac{x^{2}+1-2 x^{2}}{\left(x^{2}+1\right)^{2}}\right] \\
& =-2\left[\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}\right] \\
& =2 \frac{\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Quotient Rule
Low D High - High D Low over the square of what's below
$\left(x_{0}, y_{0}\right)$

- Slope of tangent line at $(0,0)$ is $y^{\prime}(0)=2 \frac{(-1)}{1}=-2$ Tangent line: $\frac{y-y_{0}}{x-x_{0}}=-2$

$$
y=-2 x
$$

confidence check

- Slope of tangent line at $(1,-1)$ is $y^{\prime}(1)=2 \frac{(0)}{1}=0$

Tangent line:
The horizontal line passing through the point $(1,-1)$:

$$
y=-1
$$

confidence check

* Review sec 3.9 Inverse trig fums

Ex: Use inverse function relationship \& implicit differentiation
to differentiate $y=\arccos \left(6 x^{3}\right)=\cos ^{-1}\left(6 x^{3}\right)$
Answer:
(1) Apply cos to both sides:

$$
\begin{aligned}
& \cos (y)=\cos \left(\arccos \left(6 x^{3}\right)\right) \\
& \cos (y)=6 x^{3}
\end{aligned}
$$

(2) Differentiate both sides (implicit differentiation):

$$
\frac{d}{d x}(\cos (y))=\frac{d}{d x}\left(6 x^{3}\right)
$$

Chain
Rule 6

$$
-\sin (y) \quad \frac{d y}{d x}=6.3 x^{2}
$$

(3) Solve for $\frac{d y}{d x}$:

$$
\frac{d y}{d x}=-\frac{18 x^{2}}{\sin (y)}
$$

(4) Express in terms of x :
$\cos (y)=\frac{6 x^{3}}{1}$ from step (1)

$$
\cos (y)=\frac{\text { adj } j}{\text { hyp }}
$$

So $\sin (y)=\frac{o p p}{\text { hyp }}=\frac{\sqrt{1-\left(6 x^{3}\right)^{2}}}{1}$
So $\frac{d y}{d x}=\frac{-18 x^{2}}{\sqrt{1-36 x^{6}}}$

* Review Sec 4.5 Indeterminate forms \& 'Hopital's Rule

Ex: Evaluate $\lim _{x \rightarrow 0} \frac{x^{2}}{\cos (x)-1}$

Answer:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} x^{2}=0 \\
& \lim _{x \rightarrow 0} \cos (x)-1=\cos (0)-1=0
\end{aligned}
$$

We have an indeterminate form " $\frac{0}{0}$ ". we can try applying l'Hôpital's Rule.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x^{2}}{\cos x-1}=\lim _{x \rightarrow 0} \frac{2 x}{-\sin x}=\lim _{\uparrow \rightarrow 0} \frac{2}{-\cos x}=\frac{\lim _{x \rightarrow 0} 2}{\lim _{x \rightarrow 0}-\cos x}=\frac{2}{-1}=-2 \\
& I^{\prime}+ \\
& I^{\prime} H \\
& \text { again } \\
& 2 x \rightarrow 0 \text { as } x \rightarrow 0 \\
& -\sin x \rightarrow 0 \text { as } x \rightarrow 0
\end{aligned}
$$

* Review

Sec 3.5 Derivatives of trig funs
3.6 Chain Rule
3.7 Implicit Diff
3.3 Product Rule

Ex: Given $x+\cot (x y)=2$, perform implicit differentiation to find $\frac{d y}{d x}$
Answer: Differentiate both sides term by term

$$
\begin{aligned}
& \text { [} \underbrace{\frac{d}{d x} x}_{\text {chain }}+\underbrace{\frac{d}{d x}(\cot (x y))}_{0}=\underbrace{\frac{d}{d x}(2)}_{\text {hat }} \\
& \frac{d}{d x} \cot (x y) \stackrel{\text { Rale }}{=}-(\csc (x y))^{2} \underbrace{\frac{d}{d x}(x y)} \\
& \text { product } \\
& \frac{d}{d x}(x y) \stackrel{\text { product }}{\text { Rule }}=x \frac{d y}{d x}+1 y \\
& \text { So } \quad \frac{d}{d x} \cot (x y)=-(\csc (x y))^{2}\left(x \frac{d y}{d x}+y\right) \\
& =-x(\csc (x y))^{2} \frac{d y}{d x}-y(\csc (x y))^{2} \\
& 1+-x(\csc (x y))^{2} \frac{d y}{d x}-y(\csc (x y))^{2}=0 \\
& -(y \csc (x y))^{2}=x(\csc (x y))^{2} \frac{d y}{d x} \\
& \frac{1-y(\csc (x y))^{2}}{x(\csc (x y))^{2}}=\frac{d y}{d x} \\
& \frac{(\sin (x y))^{2}-y^{1}}{x}=\frac{d y}{d x}
\end{aligned}
$$

