* Review Sec 3.9 Inverse trig funs
Ex: Use inverse function relationship &
implicit differentiation
to differentiate
$$y = \arccos(\cos(6x^3) = \cos^3(6x^3))$$

Answer:
(1) Apply cos to both sides:
 $\cos(y) = \cos(\arctan\cos(6x^3))$
 $\cos(y) = 6x^3$
(2) Differentiate both sides (implicit differentiation):
 $\frac{d}{dx}(\cos(y)) = \frac{d}{dx}(6x^2)$
Chain
Rule $\int_{-\sin(y)}^{\frac{dy}{dx}} = 6.3x^2$
(3) Solve for $\frac{dy}{dx}$:
 $\frac{dy}{dx} = -\frac{18x^2}{\sin(y)}$
(4) Express in terms of X:
 $\cos(y) = \frac{dx^3}{1}$ from Step (1)
 $\cos(y) = \frac{dx_1^3}{hyp}$
So $\sin(y) = \frac{-18x^4}{\sqrt{1-36x^6}}$

* Review Sec 4.5 Indeferminate forms & 1'Hôpital's Rule

Ex: Evaluate
$$\lim_{x\to 0} \frac{x^2}{\cos(x)^{-1}}$$

Answer: $\lim_{x\to 0} x^2 = 0$
 $\lim_{x\to 0} \cos(x) - 1 = \cos(0) - 1 = 0$
we have an indeterminate form $\frac{"0"}{0"}$.
we can try applying l'Hôpital's Rule.
 $\lim_{x\to 0} \frac{x^2}{\cos x - 1} = \lim_{x\to 0} \frac{2x}{-\sin x} = \lim_{x\to 0} \frac{2}{-\cos x} = \frac{\lim_{x\to 0} 2}{\lim_{x\to 0} -\cos x} = \frac{-2}{-1} = -2$
I'H $\lim_{x\to 0} \lim_{x\to 0} \frac{1}{\cos x + 0}$
 $\lim_{x\to 0} \sin x + 0$

Keview
Sec 3.5 Derivatives of trig funs
3.6 Chain Rule
3.7 Implicit Diff
3.3 Product Rule
Ex: Given
$$x + \cot(xy) = 2$$
, perform implicit
differentiation to find $\frac{dy}{dx}$
Answer: Differentiate both sides term by term
 $\frac{d}{dx}(xy) = -(\csc(xy))^{2} \frac{1}{dx}(xy)$
 $\frac{d}{dx}(xy) = -(\csc(xy))^{2} \frac{1}{dx}(xy)$
 $\frac{d}{dx}(xy) = -(\csc(xy))^{2} (x \frac{dy}{dx} + y)$
 $\frac{d}{dx}(xy) = -(\csc(xy))^{2} (x \frac{dy}{dx} + y)$
 $\frac{d}{dx}(xy) = -(\csc(xy))^{2} (x \frac{dy}{dx} + y)$
 $\frac{d}{dx}(xy) = -(\csc(xy))^{2} \frac{d}{dx}(xy)$
 $\frac{d}{dx} = -x(\csc(xy))^{2} \frac{d}{dx} - y(\csc(xy))^{2}$
 $\frac{d}{dx} = 0$
 $\frac{1}{1} + -x(\csc(xy))^{2} \frac{dy}{dx} - y(\csc(xy))^{2} = 0$
 $\frac{1}{1} + -x(\csc(xy))^{2} \frac{dy}{dx} - y(\csc(xy))^{2} = \frac{dy}{dx}$
 $\frac{1}{1} - \frac{y(\csc(xy))^{2}}{x} = \frac{dy}{dx}$