9.9 Convergence of Taylor Series

Recall from Sec 9.8 that the Maclaurin series of the function $f(x)=e^{x}$ is $\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad$ [From sec 9.7 , the interval of Convergence is $(-\infty, \infty)$]
Example:
the Maclaurin series
Find the Taylor series at $x=0$ for the functions...
a.) $e^{-9 x}$
b.) $18 \times \mathrm{e}^{-9 x}$

Sol
a.) If $f(x)=e^{x}$ then $f(-9 x)=\overbrace{e^{-9 x}}^{\text {our g }}$

$$
\text { So } e^{-9 x}=f(-9 x)=\sum_{n=0}^{\infty} \frac{(-9 x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 9^{n}}{n!} x^{n}
$$

our given function for part (b)
b.) If $f(x)=e^{x}$ then $18 \times f(-9 x)=18 \times e^{-9 x}$

So $18 \times e^{-9 x}=18 \times f(-9 x)=18 \times \sum_{n=0}^{\infty} \frac{(-1)^{n} 9^{n} x^{n}}{n!}$ from part (a)

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} 18 \times(-1)^{n} 9^{n} x^{n} \frac{1}{n!} \\
& =\sum_{n=0}^{\infty} \frac{18(-1)^{n} 9^{n}}{n!} x^{n+1}
\end{aligned}
$$

Note: Interval of convergence is $(-\infty, \infty)$ for both

Recall from Sec 9.8 that the Maclaurin series of the function $f(x)=\cos x$ is $1 x^{0}-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\frac{1}{8!} x^{8}+\ldots$ (Reindex So that $n=0 \quad n=1 \quad n=2 \quad n=3 \quad n=4$) $=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \quad\left[\begin{array}{c}\text { Check using Ratio Test that } \\ \text { the interval of convergence }\end{array}\right.$

Example: is $(-\infty, \infty)$.]

Find the Taylor series at $x=0$ for the functions...
a.) $x^{2} \cos \frac{\pi x}{2}$
b.) $e^{x} \cos x$ (just the first four nonzero terms)

Sol a) If $g(x)=\cos x$ then $x^{2} g\left(\frac{\pi x}{2}\right)=x^{2} \cos \frac{\pi x}{2}$
So $x^{2} \cos \left(\frac{\pi x}{2}\right)=x^{2} g\left(\frac{\pi x}{2}\right)=x^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{\pi x}{2}\right)^{2 n}=x^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{\pi}{2}\right)^{2 n} x^{2 n}$

$$
=\sum_{n=0}^{\infty} x^{2} \frac{(-1)^{n}}{(2 n)!}\left(\frac{\pi}{2}\right)^{2 n} x^{2 n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{\pi}{2}\right)^{2 n} x^{2 n+2}
$$

b) If $f(x)=e^{x}$ and $g(x)=\cos x$ then $f(x) g(x)=e^{x} \cos x$

So $e^{x} \cos x=f(x) g(x)=\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}\right)=$

$$
\begin{aligned}
& =\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right)\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right) \begin{array}{l}
\text { Multiply ye fins } \\
\text { series be each em } \\
\text { of the second series. }
\end{array} \\
& =\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right)-\left(\frac{x^{2}}{2!}+\frac{x^{3}}{2!}+\frac{x^{4}}{2!2!}+\frac{x^{5}}{2!3!}+\cdots\right)+\left(\frac{x^{4}}{4!}+\frac{x^{5}}{4!}+\frac{x^{6}}{2!4!}+\cdots\right)+\cdots \\
& =1+x-\frac{x^{3}}{3}-\frac{x^{4}}{6}+\cdots
\end{aligned}
$$

The first four nonzero terms
Note: Interval of convergence is $(-\infty, \infty)$ for both

Example:
a.) Find the Taylor series at $x=0$ for the function $\frac{1}{3}(2 x+x \cos x)$
b.) Find the first three nonzero terms

Sol
a.)

$$
\begin{aligned}
\frac{1}{3}(2 x+x \cos x) & =\frac{2}{3} x+\frac{1}{3} x\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{k} \frac{x^{2 k}}{(2 k)!}+\cdots\right) \\
& =\underbrace{\frac{2}{3} x+\frac{1}{3} x-\frac{x^{3}}{3!}+\frac{x^{5}}{3 \cdot 4!}-\cdots}=x-\frac{x^{3}}{6}+\frac{x^{5}}{72}-\cdots \\
& =\begin{array}{l}
\text { Taylor series } \\
\text { for cos } x
\end{array} \\
& \frac{2}{3} x+\sum_{n=0}^{\infty} \frac{1}{3} \times \frac{(-1)^{n}}{(2 n)!} \times^{2 n} \\
& =\frac{2}{3} x+\sum_{n=0}^{\infty} \frac{1}{3} \frac{(-1)^{n}}{(2 n)!} \times^{2 n+1}
\end{aligned}
$$

b. The first three nonzero terms

Review of Sec 9.7 Part B

Example: $\quad \begin{aligned} & \text { Find a power series representation for } f(x)=\frac{2 x^{4}}{2-3 x} \text { and find its interval of } \\ & \text { convince. }\end{aligned}$

$$
\begin{aligned}
\frac{1}{2} \frac{2 x^{4}}{\frac{1}{2}(2-3 x)} & =\frac{x^{4}}{1-\frac{3}{2} x} \\
& =x^{4} \frac{1}{1-\left(\frac{3}{2} x\right)} \\
& =x^{4} \sum_{n=0}^{\infty}\left(\frac{3}{2} x\right)^{n} \quad \text { if }\left|\frac{3}{2} x\right|<1 \Leftrightarrow|x|<\left(\frac{2}{3}\right)^{\text {nadia }} \\
& =x^{4} \sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n} x^{4+n}
\end{aligned}
$$

radius of convergence

Interval of convergence: $\left(-\frac{2}{3}, \frac{2}{3}\right)$

Example:
Find the Taylor series at $x=0$ for $f(x)=\frac{81}{(1-x)^{2}}$ and its radius of convergence.

- We know $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ with radius of convergence $R=1$.
- Take the derivative of both sides

$$
-\frac{1}{(1-x)^{2}}(-1)=0+\sum_{n=1}^{\infty} n x^{n-1} \quad \begin{aligned}
& \text { Radius of convergence } \\
& \text { is still } R=1
\end{aligned}
$$ is still $R=1$

- So $\frac{81}{(1-x)^{2}}=\sum_{n=1}^{\infty} 81 n x^{n-1}$. Radius of convergence is still $R=1$

