9.7 Power Series Part B

We've seen examples of convergent power series-but can we write an explicit function that is represented by a power series?

Consider $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots$
This is geometric series with ratio $=x$

The power series converges if $|x|<1$
so the interval of convergence is $(-1,1)$

When x is in the interval of convergence, $\sum_{n=0}^{\infty} x^{n}$ converges to $\frac{1}{1-x}$
and $\sum_{n=5}^{\infty} x^{n}=x^{5}+x^{6}+x^{7}+\ldots=x^{5}\left(1+x+x^{2}+\ldots\right)=x^{5} \frac{1}{1-x}$

PAGE 2

Extending THis IDEA

For $|x|<1$, we can express $\frac{1}{1-x}$ as the power series $1+x+x^{2}+\cdots$
Example: Can we express $\frac{1}{3-x}$ as a power series? What values of x would work?

$$
\begin{aligned}
\frac{\frac{1}{3} 1}{\frac{1}{3}(3-x)} & =\frac{\frac{1}{3}}{\left(1-\frac{x}{3}\right)} \\
& =\frac{1}{3} \frac{1}{1-\left(\frac{x}{3}\right)} \\
& \left.=\frac{1}{3} \sum_{n=0}^{\infty}\left(\frac{x}{3}\right)^{n} \quad \text { if }\left|\frac{x}{3}\right|<1 \Leftrightarrow|x|<3\right)^{\text {radius of }} \text { convergence }
\end{aligned}
$$

Interval of convergence is $(-3,3)$

Question: What is the center?
$\begin{array}{llll}\text { A. } 0 & \text { B. } 1 & \text { C. } 2 & \text { D. } 3\end{array}$
Question: What is the radius of convergence?
A. 1
B. 3
C. $1 / 3$

Example: Find a power series representation for $f(x)=\frac{5}{1+4 x^{2}}$ and find its interval of convergence.

$$
\begin{aligned}
\frac{5}{1+4 x^{2}} & =5 \frac{1}{1-\left(-4 x^{2}\right)} \\
& =5 \sum_{n=0}^{\infty}\left(-4 x^{2}\right)^{n} \text { if }\left|-4 x^{2}\right|<1
\end{aligned} \begin{aligned}
& \Leftrightarrow\left|x^{2}\right|<\frac{1}{4} \\
& \Leftrightarrow|x|<\underbrace{\frac{1}{2}}_{\text {radius }} \text { of convergence }
\end{aligned}
$$

$$
=5 \sum_{n=0}^{\infty}(-1)^{n} 4^{n} x^{2 n}
$$

Interval of convergence:

$$
\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

Question: What is the radius of convergence?
A. 1
B. $2 \quad$ C. $1 / 2$
D. 4
E. $1 / 4$

A similar problem
Example: $\quad \begin{aligned} & \text { Find a power series representation for } f(x)=\frac{2 x^{4}}{2-3 x} \text { and find its interval of } \\ & \text { convergence. }\end{aligned}$

$$
\begin{aligned}
\frac{1}{2} \frac{2 x^{4}}{\frac{1}{2}(2-3 x)} & =\frac{x^{4}}{1-\frac{3}{2} x} \\
& =x^{4} \frac{1}{1-\left(\frac{3}{2} x\right)} \\
& =x^{4} \sum_{n=0}^{\infty}\left(\frac{3}{2} x\right)^{n} \\
& =x^{4} \sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n} x^{4+n}
\end{aligned}
$$

$$
=x^{4} \sum_{n=0}^{\infty}\left(\frac{3}{2} x\right)^{n} \quad \text { if }\left|\frac{3}{2} x\right|<1 \Leftrightarrow|x|<\left(\frac{2}{3}\right.
$$

Interval of convergence: $\left(-\frac{2}{3}, \frac{2}{3}\right)$

What happens if we find an antiderivative for the equation below?

$$
\begin{aligned}
\frac{1}{1+x} & =\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots \quad \text { for } \quad|x|<1 \\
\int \frac{1}{1+x} d x & =\int\left(\sum_{n=0}^{\infty}(-1)^{n} x^{n}\right) d x \\
& =\int\left(1-x+x^{2}-x^{3}+\ldots\right) d x \\
& =\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots\right)+C \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}+C
\end{aligned}
$$

Differentiation and Integration
We can use differentiation and integration to express other kinds of functions as powers series:
Theorem: If the power series $\sum c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then the function f defined by

$$
f(x) \stackrel{\operatorname{def}}{=} c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

is differentiable (and therefore continuous) on the interval $(a-R, a+R)$ and

$$
\begin{aligned}
& \left(c_{n} x^{n}\right)^{\prime}=n c_{n} x^{n-1} \\
& \int c_{n} x^{n} d x= \\
& c_{n} \frac{x^{n+1}}{n+1}+C
\end{aligned}
$$

(I) $f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}$
(II) $\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\cdots=$

$$
C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
$$

term-by-term differentiation \& term-by-term integration

The radii of convergence for both of these power series is R.
Radius of convergence stays the same (after term-by-term differentiation and integration)

Find a power series representation (centered at 0) for $f(x)=\frac{1}{(5+x)^{2}}$.

Step $0 \quad \frac{d}{d x}\left[\frac{1}{(5+x)}\right]=-\frac{1}{(5+x)^{2}}$

$$
\frac{d}{d x}\left[-\frac{1}{5+x}\right]=\frac{1}{(5+x)^{2}}
$$

Step 1

$$
\begin{aligned}
-\frac{1}{5+x} & =-\frac{\frac{1}{5}}{\frac{1}{5}(5+x)} \\
& =-\frac{1}{5} \frac{1}{1-\left(-\frac{x}{5}\right)} \\
& =-\frac{1}{5} \sum_{n=0}^{\infty}\left(-\frac{x}{5}\right)^{n} \\
& =-\frac{1}{5} \sum_{n=0}^{\infty}\left(-\frac{1}{5}\right)^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(-\frac{1}{5}\right)^{n+1} x^{n}
\end{aligned}
$$

$=-\frac{1}{5} \sum_{n=0}^{\infty}\left(-\frac{x}{5}\right)^{n}$ for $\left|\frac{-x}{5}\right|<1 \Leftrightarrow|x|<5 \quad$ Radius of convergence: 5

Step 2

$$
\begin{aligned}
\frac{1}{(5+x)^{2}} & =\frac{d}{d x}\left[-\frac{1}{5+x}\right] \\
& =\frac{d}{d x}\left[\sum_{n=0}^{\infty}\left(-\frac{1}{5}\right)^{n+1} x^{n}\right] \\
& =\frac{d}{d x}\left[\left(-\frac{1}{5}\right) x^{0}+\sum_{n=1}^{\infty}\left(-\frac{1}{5}\right)^{n+1} x^{n}\right] \\
& =0+\sum_{n=1}^{\infty}\left(-\frac{1}{5}\right)^{n+1} n x^{n-1}
\end{aligned}
$$

PAGE 8
(you can stop here, but let's keep going)

$$
=\sum_{n=0}^{\infty}\left(-\frac{1}{5}\right)^{n+2}(n+1) x^{n}
$$

ExAMPLE

Find $\int \ln \left(1+t^{4}\right) d t$ as a power series, and find its radius of convergence.

To find C, ping in the center $x=0$ of the power series

$$
\ln (1+0)=0+c
$$

so $c=0$

$$
\ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \quad \text { for }|x|<1
$$

Step 2:

Step 3: $\int \ln \left(1+t^{4}\right) d t=\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{4 n+5}}{(n+1)(4 n+5)}+$ Constant

Same radius of Convergence, 1

Find $\arctan (x)$ as a power series, and find its radius of convergence.

SOLUTION We observe that $f^{\prime}(x)=1 /\left(1+x^{2}\right)$ and find the required series by antegrating the power series for $1 /\left(1+x^{2}\right)$ found in Example 1.

$$
\begin{aligned}
\tan ^{-1} x & =\int \frac{1}{1+x^{2}} d x=\int\left(1-x^{2}+x^{4}-x^{6}+\cdots\right) d x \\
& =C+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
\end{aligned}
$$

To find C we put $x=0$ and obtain $C=\tan ^{-1} 0=0$. Therefore

$$
\begin{aligned}
\tan ^{-1} x & =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
\end{aligned}
$$

Since the radius of convergence of the series for $1 /\left(1+x^{2}\right)$ is 1 , the radius of convergence of this series for $\tan ^{-1} x$ is also 1 .

Answer: $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$ for $|x|<1$

$$
\begin{gathered}
\text { Radius of convergence } \\
\text { is } R=1
\end{gathered}
$$

Use the fact $\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$ (with radius of convergence 1) to find a power series representation of $\int \frac{\arctan (2 x)}{x} d x . \leftarrow_{\text {This cannot be solved }}$ by Chapter 8 techniques Find its radius of convergence.

$$
\begin{aligned}
\arctan (2 x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x)^{2 n+1}}{2 n+1} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1} x^{2 n+1}}{2 n+1} \quad \text { for }|2 x|<1 \Leftrightarrow|x|<\frac{1}{2} \\
\frac{\arctan (2 x)}{x} & =\frac{1}{x} \sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1} x^{2 n+1}}{2 n+1} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1} x^{2 n}}{2 n+1} \quad \begin{aligned}
\frac{\arctan (2 x)}{x} d x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1}}{2 n+1} x^{2 n} d x \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1}}{2 n+1} \frac{x^{2 n+1}}{2 n+1}+C \\
& =\left(2 x-\frac{2^{3} x^{3}}{9}+\frac{2^{5} x^{5}}{25}-\frac{2^{7} x^{7}}{49}+\ldots\right)+C
\end{aligned} \quad \text { PAGE } 12
\end{aligned}
$$

Radius of convergence is the same as for the series for $\arctan (2 x): \frac{1}{2}$

Example: Find $\frac{4 x+5}{5 x^{2}-19 x-4}$ as a power series, and find its radius of convergence.

$$
x=-\frac{1}{5}:-\frac{4}{5}+5=A\left(-\frac{1}{5}-4\right)
$$

$$
\begin{aligned}
f(x) & =-\frac{1}{5 x+1}+\frac{1}{x-4} \\
& =-\frac{1}{1-(-5 x)}-\frac{1}{4-x} \\
& =-\sum_{n=0}^{\infty}(-5 x)^{n}-\left(\frac{1}{4\left(1-\frac{x}{4}\right)}\right. \\
& =\sum_{n=0}^{\infty}(-1)(-5)^{n} x^{n}-\sum_{n=0}^{\infty} \frac{1}{4}\left(\frac{1}{4}\right)^{n} x^{n}
\end{aligned}
$$

$$
\frac{21}{5}=A\left(-\frac{21}{5}\right) \Rightarrow A=-1
$$

Interval of convergence is the intersection

PAGE 14
and the interval for $\sum_{n=0}^{\infty} \frac{1}{4}\left(\frac{x}{4}\right)^{n}$ which is $(-4,4)$
So it is $\left(-\frac{1}{5}, \frac{1}{5}\right)$

