9.7 Power Series Part A

page 1

A power series is a series of the form
called coefficients of the power series

$$\sum_{n=0}^{\infty} c_n^{\nu} (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots \qquad \text{where } \{c_0, c_1, c_2, \dots\}$$
is a sequence of
numbers

The number a is called the <u>center</u> of the series.

Examples:

1.
$$\sum_{n=0}^{\infty} 2(x-1)^n = 2 + 2(x-1) + 2(x-1)^2 + \dots$$

1. $\frac{\text{Center}}{1}$
 $\frac{\text{Center}}{1}$
 $\frac{\text{Center}}{2}$

3.
$$\sum_{n=0}^{\infty} \frac{(x+2)^n}{5^n} = 1 + \frac{x+2}{5} + \frac{(x+2)^2}{25} + \dots$$

page 2

CONVERGENCE EXAMPLE

Example: Consider the power series

$$\sum_{n=0}^{\infty} \frac{x^n}{3^n} = 1 + \frac{x}{3} + \frac{x^2}{9} + \dots$$

where plugging in different values of x gives different series. For instance,

Input
$$x = -1$$
:
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} = 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots$$
 is a convergent geometric
series $(r = -\frac{1}{3})$, or
use Ratio Test
Input $x = 4$:
$$\sum_{n=0}^{\infty} \frac{(4)^n}{3^n} = 1 + \frac{4}{3} + \frac{16}{9} + \frac{64}{27} + \dots$$
 is a divergent geometric
series $(r = \frac{4}{3})$, or
use Ratio Test, or
use Ratio Test, or
use Ratio Test, or
use Divergence Test.
A. 0 B. 1 C. $\frac{1}{3}$ D. 3
$$\sum_{n=0}^{\infty} \frac{(1)^n}{3^n} (x - 0)^n$$
 so the center is 0.

Goal: For what interval of *x*-values does this power series converge? This interval is called the **interval of convergence**.

New vocab: the collection of inputs for which a power series converges.

THEOREM

For a given power series

$$\sum_{n=0}^{\infty} c_n (x-a)^n$$

there are only three possibilities

- 1. The series converges only when $\underline{\times = a}$
- 2. The series converges $for all \times$
- 3. There is a positive number R such that ...
 - the series converges if |x a| < R and
 - the series diverges if |x a| > R.

Note: if |x - a| = R, it could either converge or diverge. You must check!

What are the intervals of convergence in each of these situations?

PACE A

RADIUS OF CONVERGENCE

Memorize new vocab

For our three possible types of intervals of convergence, the radii of convergence are as follows:

- 1. interval [a, a] means radius is <u>0</u>
- 2. interval $(-\infty, \infty)$ means radius is $\underline{\otimes}$
- 3. interval (a R, a + R) or (a R, a + R] or [a R, a + R] or [a R, a + R] means radius is \underline{R}

Example: What is the *radius of convergence* for

$$\sum_{n=0}^{\infty} \frac{x^n}{3^n} = 1 + \frac{x}{3} + \frac{x^2}{9} + \dots$$
Answer:
$$\sum_{n=0}^{\infty} \left(\frac{x}{3}\right)^n$$
 is a geometric series with ratio $\frac{x}{3}$.
So this series converges iff $\left|\frac{x}{3}\right| < 1 \iff |x| < 3$.
 $\implies -3 < x < 3$.
Distance between the center (0) to one of the endpoints (3) is $R=3$.

Use ideas about geometric series to find the interval of convergence and the radius of convergence for

$$\sum_{n=0}^{\infty} \frac{(x+2)^n}{5^n} = 1 + \frac{x+2}{5} + \frac{(x+2)^2}{25} + \dots$$

Answer:

$$\sum_{n=0}^{\infty} \frac{x+2}{5}$$
 is a geometric series with ratio $\frac{x+2}{5}$
So the series converges iff $\left|\frac{x+2}{5}\right| < 1 \iff |x+2| < 5$
 $-5 < x+2 < 5$
 $-7 < x < 5$
Interval of convergence is $(-7,3)$

Radius of convergence is R=5 (distance between center, 2, and an endpoint)

page 6

Alternate solution:
OR, use Ratio Test:
If
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$
, then $\sum |a_n|$ is convergent
If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then $\sum |a_n|$ is convergent
If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum a_n$ is divergent.
Let $a_n = \left(\frac{x+2}{5} \right)^n \frac{a_{n+1}}{a_n} = \left(\frac{x+2}{5} \right)^{n+1} \cdot \frac{5^n}{(x+2)^n} = \frac{(x+2)^{n+1}}{5n+1} \cdot \frac{5^n}{5n+1} = \frac{x+2}{5}$
so $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x+2}{5} \right| = \left| \frac{x+2}{5} \right|$
If $\left| \frac{x+2}{5} \right| < 1 \iff |x+2| < 5$, the series converges
If $\left| \frac{x+2}{5} \right| > 1 \iff |x+2| > 5$, the series diverges.

If
$$x+2=5$$
 or $x+2=-5$, we have $\sum_{n=0}^{\infty} 1$ and $\sum_{n=0}^{\infty} (-1)^n$ which are divergent.

Example:

Use the Ratio Test on the power series $\sum_{n=1}^{\infty} \frac{5^n (x-4)^n}{\sqrt{n}} \qquad \text{Let} \quad a_n = \frac{5^n (x-4)^n}{\sqrt{n}}$ $\frac{q_{n+1}}{q_n} = \frac{5^{n+1} (x-4)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{5^n (x-4)^n} = \frac{5}{\sqrt{n+1}} \frac{\sqrt{n}}{\sqrt{n+1}}$ $\lim_{n \to \infty} \left| \frac{q_{n+1}}{q_n} \right|_{n \to \infty} \frac{1}{\sqrt{n+1}} (x-4) \right|$ $= |5(x-4)| \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1}}$ $= |5(x-4)| \cdot 1 \qquad \text{since } \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1}} = 1$ By Ratio Test, $\sum q_n \text{ converges when } |5(x-4)| < 1$ $|x-4| < \frac{1}{5}$

page 8

CONTINUED

$$\sum_{n=1}^{\infty} \frac{5^n (x-4)^n}{\sqrt{n}} = 1 + (x-4) + \frac{(x-4)^2}{2} + \dots$$

What is the center of the series? A. 0 B. 4 C. -4 What is the radius of convergence? A. 5 B. 10 C. $\frac{1}{5}$ D. $\frac{2}{5}$ What is the interval of convergence? We know I must include $(4 - \frac{1}{5}, 4 + \frac{1}{5})$

Think Excertial n¹, grows fuscer than
exponential function (some number)
so I expect
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 (enverges for all x
Example: Find the radius and interval of convergence for $\sum_{n=0}^{\infty} \frac{n^n}{n!}$ (et $q_n = \frac{x^n}{n!}$
Here Ratio Test: $\frac{1}{q_n} = \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} = \frac{1}{n+1} \cdot x$
 $\frac{1}{d_n} \left| \frac{d_{n+1}}{d_n} \right| = \frac{1}{d_n} \left| \frac{x}{x^n} \right| = |x| \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1$ for any number x
So by Ratio Test: $\frac{1}{q_n + 1} = \frac{1}{n+1} \cdot \frac{1}{x^n} = \frac{1}{n+1} \cdot x$
What is the radius of convergence of this series? The center is $a=0$
A.0 B.1 C.10 D.
The center is $a=0$
 $\frac{1}{(x+2)!} = \frac{1}{(x+2)!} \frac{1}{(x+2)!} \frac{1}{(x+2)!} \frac{1}{(x+2)!} \frac{1}{(x+2)!} \frac{1}{(x+2)!} = \frac{1}{(x+2)!} \frac{1}{(x+2)!} \frac{1}{(x+2)!} \frac{1}{(x+2)!} = \frac{1}{(x+2)!} \frac{1}{(x+2)!} \frac{1}{(x+2)!} = \frac{1}{(x+2)!} \frac{1}{(x+2)!} \frac{1}{(x+2)!} = \frac{1}{(x+2)!} \frac{1}{(x+2)!}$

What is the radius of convergence of this series?

A. 0 **B.** 1 **C.** 8 **D.** ∞