A power series is a series of the form

$$
\begin{aligned}
& \text { where } \left.\left\{c_{0}, c_{1} c_{2}, \ldots\right\}\right\} \\
& \sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots \quad \text { is a sequence of } \\
& \text { numbers }
\end{aligned}
$$

The number a is called the center of the series.
Examples:

1. $\sum_{n=0}^{\infty} 2(x-1)^{n}=2+2(x-1)+2(x-1)^{2}+\ldots$
$\frac{\text { center }}{1}$
$\frac{\text { coefficients }}{c_{n}=2}$
2. $\sum_{n=0}^{\infty} \frac{(x-4)^{n}}{n^{2}+2}=\frac{1}{2}+\frac{x-4}{3}+\frac{(x-4)^{2}}{11}+\ldots$
4
$c_{n}=\frac{1}{n^{2}+2}$
3. $\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{5^{n}}=1+\frac{x+2}{5}+\frac{(x+2)^{2}}{25}+\ldots$

$$
c_{n}=\frac{1}{5^{n}}
$$

PAGE 2

Convergence Example

Example: Consider the power series

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n}}=1+\frac{x}{3}+\frac{x^{2}}{9}+\ldots
$$

where plugging in different values of x gives different series. For instance,
$\infty^{\infty}(-1)^{n} 1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+$ is a convergent geometric
Input $x=-1: \sum_{n=0} \frac{(-1)^{n}}{3^{n}}=1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+\ldots \begin{gathered}\text { series }\left(r=-\frac{1}{3}\right) \text {, or } \\ \text { use Ratio Test }\end{gathered}$
Input $x=4: \sum_{\sum_{n=0}^{\infty} \frac{(4)^{n}}{3^{n}}=1+\frac{4}{3}+\frac{16}{9}+\frac{64}{27}+\ldots \text { is a divergent geometric }}^{\text {series }\left(r=\frac{4}{3}\right) \text {, or }}$ use Ratio Test, or
What is the center of this series, $\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n}}$? use Divergence Test.
A. 0
B. 1
C. $\frac{1}{3}$
D. 3 左 $\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}(x-0)^{n}$
so the center is 0 .

Goal: For what interval of x-values does this power series converge? This interval is called the interval of convergence.

New vocab: the collection of inputs for which a power series converges.

Theorem

For a given power series

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

there are only three possibilities

1. The series converges only when $\quad x=a$
2. The series converges for all x
3. There is a positive number R such that...

- the series converges if $|x-a|<R$ and
- the series diverges if $|x-a|>R$.

Note: if $|x-a|=R$, it could either converge or diverge. You must check!

What are the intervals of convergence in each of these situations?

1. converges for all x in $[a, a]$ interval is $\{a\}$
2. converges for all x in $(-\infty, \infty)$ interval is $(-\infty, \infty)$
3. converges for all $|x-a|<R$ i.e. for all x in $(a-R, a+R)$. Interval may be

- This might not be the interval of convergence! $(a-R, a+R)$ or
- Check whether $x=a-R$ is in the interval $(a-R, a+R]$ or $[a-R, a+R)$ or $[a-R, a+R]$.

Radius of Convergence

Memorize new vocab

The radius of convergence is the distance from the center of the series to one of the endpoints of the interval of convergence.

For our three possible types of intervals of convergence, the radii of convergence are as follows:

1. interval $[a, a]$ means radius is
2. interval $(-\infty, \infty)$ means radius is ∞
3. interval $(a-R, a+R)$ or $(a-R, a+R]$ or $[a-R, a+R)$ or $[a-R, a+R]$ means radius is $\quad R$

Example: What is the radius of convergence for

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n}}=1+\frac{x}{3}+\frac{x^{2}}{9}+\ldots
$$

Answer: $\sum_{n=0}^{\infty}\left(\frac{x}{3}\right)^{n}$ is a geometric series with ratio $\frac{x}{3}$
So this series converges iff $\left|\frac{x}{3}\right|<1 \quad \Longleftrightarrow \quad|x|<3$
Distance between the center (0) to one of the endpoints (3) is $R=3$

Example:

Use ideas about geometric series to find the interval of convergence and the radius of convergence for

$$
\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{5^{n}}=1+\frac{x+2}{5}+\frac{(x+2)^{2}}{25}+\ldots
$$

Answer:
$\sum_{n=0}^{\infty}\left(\frac{x+2}{5}\right)^{n}$ is a geometric series with ratio $\frac{x+2}{5}$
So the series converges iff $\left|\frac{x+2}{5}\right|<1 \quad \Longleftrightarrow \quad|x+2|<5$

$$
\begin{aligned}
-5 & <x+2<5 \\
-5-2 & <x<5-2 \\
-7 & <x<3
\end{aligned}
$$

Interval of convergence is $(-7,3)$
Radius of convergence is $R=5$ (distance between center, 2 , and an endpoint)

PAGE 6

OR, use Ratio Test:
If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then $\sum\left|a_{n}\right|$ is convergent

If $\lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|=\infty$, then $\sum a_{n}$ is divergent.
Let $a_{n}=\left(\frac{x+2}{5}\right)^{n} \quad \frac{a_{n+1}}{a_{n}}=\frac{(x+2)^{n+1}}{5^{n+1}} \cdot \frac{5^{n}}{(x+2)^{n}}=\frac{(x+2)^{n+1}}{(x+2)^{n}} \cdot \frac{5^{n}}{5^{n+1}}=\frac{x+2}{5}$
so $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x+2}{5}\right|=\left|\frac{x+2}{5}\right| \quad$ If $\left|\frac{x+2}{5}\right|<1 \Leftrightarrow|x+2|<5$, the series converges If $\left|\frac{x+2}{5}\right|>1 \Leftrightarrow|x+2|>5$, the series diverges.

If $x+2=5$ or $x+2=-5$, we have $\sum_{n=0}^{\infty} 1$ and $\sum_{n=0}^{\infty}(-1)^{n}$ which are divergent.

Example:
Use the Ratio Test on the power series $\sum_{n=1}^{\infty} \frac{5^{n}(x-4)^{n}}{\sqrt{n}}$ Let $a_{n}=\frac{5^{n}(x-4)^{n}}{\sqrt{n}}$

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{5^{n+1}(x-4)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{5^{n}(x-4)^{n}}=5 \frac{\sqrt{n}}{\sqrt{n+1}}(x-4) \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|5 \frac{\sqrt{n}}{\sqrt{n+1}}(x-4)\right| \\
& =|5(x-4)| \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}} \\
& =|5(x-4)| \cdot 1 \quad \text { since } \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}}=1
\end{aligned}
$$

By Ratio Test, $\sum a_{n}$ converges when $|5(x-4)|<1$

$$
\begin{aligned}
|x-4| & <\frac{1}{5} \\
-\frac{1}{5}<x-4 & <\frac{1}{5}
\end{aligned}
$$

PAGE 8
CONTINUED

$$
\sum_{n=1}^{\infty} \frac{5^{n}(x-4)^{n}}{\sqrt{n}}=1+(x-4)+\frac{(x-4)^{2}}{2}+\ldots
$$

What is the center of the series?
A. 0
B. 4
C. -4

What is the radius of convergence?
A. 5
B. 10
C. $\frac{1}{5}$
D. $\frac{2}{5}$

What is the interval of convergence?
We know I must include $\left(4-\frac{1}{5}, 4+\frac{1}{5}\right)$

Check $x=4-\frac{1}{5}: \sum_{n=1}^{\infty} \frac{5^{n}\left(-\frac{1}{5}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges by Alternating Series Test (so I includes $x=4-\frac{1}{5}$)
Check $x=4+\frac{1}{5}: \sum_{n=1}^{\infty} \frac{5^{n}\left(\frac{1}{5}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a divergent p-series $\left(p=\frac{1}{2}\right)$
(so I does not include $x=4+\frac{1}{5}$)
$I=\left[4-\frac{1}{5}, 4+\frac{1}{5}\right]$ is the interval of convergence

Think Factorial n ! grows faster than
exponential function (some number) ${ }^{n}$
so 1 expect $\sum x^{n} \frac{1}{n!}$ converges for all x

Use Ratio Test: $\quad \frac{a_{n+1}}{a_{n}}=\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}=\frac{1}{n+1} \cdot x$
$\lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{n+1}\right|=|x| \lim _{n \rightarrow \infty} \frac{1}{n+1}=0<1 \quad$ for any number x
So by Ratio Test, $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges for all x.

$$
\begin{aligned}
& R=\infty \\
& I=(-\infty, \infty)
\end{aligned}
$$

What is the radius of convergence of this series?
The center is $a=0$
A. 0
B. 1
C. 10
D. ∞

Think Factorial $n!$ grows faster than exponential function
so $\left|n!(x+8)^{n}\right| \rightarrow \infty$ unless $x+8=0$
PAGE 10
So 1 expect $\sum n!(x+8)^{n}$ diverges except when $x=-8$
Example: Find the radius and interval of convergence for
The center is $a=-8$

Use Ratio Test: $\frac{a_{n+1}}{a_{n}}=\frac{(n+1)!(x+8)^{n+1}}{n!(x+8)^{n}}$
$=(n+1)(x+8)$
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}|(n+1)(x+8)|=|x+8| \lim _{n \rightarrow \infty}(n+1)= \begin{cases}\infty & \text { if } x \neq-8 \\ 0 & \text { if } x=-8\end{cases}$

The series converges if and only if $x=-8$

$$
I=\{-8\}, \quad R=0
$$

What is the radius of convergence of this series?
A. 0
B. 1
C. 8
D. ∞

