9.6 Alternating Series and Conditional Convergence

A series is called alternating if the terms are alternately positive and negative.
Alternating Series Test.
IF the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots, \quad \text { where all } b_{n}>0
$$

or

$$
\sum_{n=1}^{\infty}(-1)^{n} b_{n}=-b_{1}+b_{2}-b_{3}+b_{4}-b_{5}+b_{6}-\cdots, \quad \text { where all } b_{n}>0
$$

satisfies
(i) $b_{n+1} \leq b_{n}$ for all n, \quad (eventually $\left\{b_{n}\right\}$ is decreasing)
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$, for $n \geqslant N$, for some positive integer N

THEN
the series Converges

Note: If either condition in this test fails then the test cannot be used.

Note: - The Alternating Series Test can only be used to conclude convergence.

- If you think the series diverges, you have to use a different Test.

1. True or false? $\sum_{n=1}^{\infty} \frac{\cos (n)}{n}$ is an alternating series.
2. True or false? The infinite series $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{1 / 4}}$ is alternating. $\quad \frac{-1}{1}+\frac{1}{2}+\frac{-1}{3}+\frac{1}{4}+\frac{-1}{5}+\ldots$ $\cos (n \pi)=\left\{\begin{array}{cll}-1 & \text { if } n & \text { is odd } \\ 1 & \text { if } n & \text { is even }\end{array}\right.$

so $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{1 / 4}}=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{1 / 4}}$ is alternating with $b_{n}=\frac{1}{n^{1 / 4}}$.

Example 1:
Determine whether $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$ converges or diverges.

Sol:
Since $\frac{1}{\sqrt{n+1}} \leqslant \frac{1}{\sqrt{n}}$ for $n=1,2,3, \ldots$
and

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
$$

this alternating series satisfies the condition for the Alternating Series Test.

So $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$ converges

Example 2: The alternating series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{3 / 2}}$ converges by the Alternating Series Test because

$$
\frac{1}{(n+1)^{\frac{3}{2}}} \leq \frac{1}{n} \quad \text { for } n=1,2,3, \ldots
$$

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{3 / 2}}=0
$$

Example 3:
In general, if $p>0$, the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{P}}$ converges by the Alternating Series Test.

New Definition
A series is called conditionally convergent if it is convergent but not absolutely convergent

Recall:

- If a series is absolutely convergent, then it is convergent
- If a series is convergent, it may be absolutely convergent or not absolutely convergent.

Just say $\sum a_{n}$ is divergent
$\longrightarrow \sum\left|a_{n}\right|$ is divergent
$\sum a_{n}$ is divergent
$\sum a_{n}$
$\sum a_{n}$ is convergent $\longrightarrow \sum\left|a_{n}\right|$ is divergent
$\geq \sum\left|a_{n}\right|$ is convergent
Say $\sum a_{n}$ is absolutely
convergent

Example 1 again:
$\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$ is conditionally convergent because $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ is convergent (by Alternating Series Test) but
$\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{\sqrt{n}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ is divergent (because it's a p-series with $p=\frac{1}{2}<1$)

Example 2 again:
$\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{3 / 2}}$ is absolutely convergent because
$\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n^{\frac{3}{2}}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ is convergent (because it's a p-series with $p=\frac{3}{2}>1$)
(Note: Since the series is absolutely convergent, it is convergent.)

Example 3 again: The alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{P}} \ldots$
a.) ... converges absolutely when $1<p$
because $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n^{P}}\right|=\sum \frac{1}{n^{P}}$ is a convergent p-series
b.) \ldots converges conditionally when $0<p \leqslant 1$
because it converges by the Alternating Series Test but $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n^{P}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{P}}$ is a divergent p-series
c.) \ldots diverges when $p \leqslant 0$
because $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n^{P}}$ does not exist
so it diverges by the n-th Term Test for Divergence.

