Thm

A series is called alternating if the terms are alternately positive and negative.
Alternating Series Test.
IF the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots, \quad \text{where all } b_n > 0$$
or

$$\sum_{n=1}^{\infty} (-1)^n b_n = -b_1 + b_2 - b_3 + b_4 - b_5 + b_6 - \cdots, \quad \text{where all } b_n > 0$$
satisfies
(i) $b_{n+1} \leq b_n$ for all n , (even + ually [b_n] is decreasing)
(ii) $\lim_{n \to \infty} b_n = 0$, for $n \geq N$, for some positive integer N
THEN
the series Converges.

Note: If either condition in this test fails then the test cannot be used.

True or false

1. True or false?
$$\sum_{n=1}^{\infty} \frac{\cos(n)}{n}$$
 is an alternating series.

2. True or false? The infinite series
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{\frac{1}{4}}}$$
 is alternating. $-\frac{1}{1} + \frac{1}{2} + \frac{-1}{3} + \frac{1}{4} + \frac{-1}{5} + \dots$

$$(OS(n\pi)) = \begin{cases} -1 \quad if \quad n \quad is \quad odd \\ 1 \quad if \quad n \quad is \quad even \end{cases}$$

$$So \quad \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{\frac{1}{4}}} = \sum_{n=1}^{\infty} (-1)^{\frac{1}{n^{\frac{1}{4}}}}$$
 is alternating with $b_n = \frac{1}{n^{\frac{1}{4}}}$.

Example 1:

Determine whether $\sum_{n=1}^{\infty} (-i)^n \frac{1}{\sqrt{n!}}$ converges or diverges.

Sol:
Since
$$\frac{1}{\sqrt{n+1}} \leq \frac{1}{\sqrt{n}}$$
 for $n = 1, 2, 3, ...$

and

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0,$$

this alternating series satisfies the condition
for the Alternating Series Test.
So $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$ converges
Example 2: The alternating series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^{3/2}}$
converges by the Alternating Series Test because
 $\frac{1}{(n+1)^2} \leq \frac{1}{n}$ for $n=1,2,3...$
and
 $\lim_{n \to \infty} \frac{1}{n^{3/2}} = 0$

Example 3: In general, if P > 0, the alternating series $\sum_{n=1}^{\infty} \frac{C-1}{n^{p}} \frac{Converges}{n} by$ the Alternating Series Test.

New Definition A series is called conditionally convergent if it is convergent but not absolutely convergent Recall: · If a series is absolutely convergent, then it is convergent · If a series is convergent, it may be absolutely convergent or Just say Ξa_n is <u>divergent</u> $\longrightarrow \Sigma[a_n]$ is divergent Σa_n is divergent not absolutely convergent. > Zan is convergent Say Zan is <u>conditionally</u> <u>convergent</u> an an is convergent Say Zan is absolutely convergent

Example 1 again:

$$\sum_{n=1}^{\infty} (-1)^{n} \frac{1}{\sqrt{n!}} \quad \text{is conditionally convergent because}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n!}} \quad \text{is convergent} \quad (by \text{ Alternating Series Test})$$

$$but$$

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n}}{\sqrt{n!}} \right| = \sum_{n=1}^{\infty} \frac{1}{n!} \quad \text{is divergent} \quad (because \quad \text{it's a p-series})$$

$$with \quad p = \frac{1}{2} < 1$$

Example 2 again:

$$\sum_{n=1}^{\infty} (-1)^{n} \frac{1}{n^{3}2} \quad \text{is } \frac{\text{absolutely convergent}}{n^{3}2} \quad \text{because}$$

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n}}{n^{3}2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^{3}} \quad \text{is convergent}}{n^{3}} \left(\begin{array}{c} \text{because it's a } p \text{-series} \\ \text{with } p = \frac{3}{2} > 1 \end{array} \right)$$
(Note: Since the series is absolutely convergent, it is convergent.)

Example 3 again: The alternating series
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$$
 ...

a) ... converges absolutely when
$$1 < P$$

because $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^p} \right| = \sum \frac{1}{n^p}$ is a convergent p-series

b.) ... converges conditionally when
$$0$$

because it converges by the Alternating Series Test
but
$$\sum_{N=1}^{\infty} \left| \frac{G(D)^n}{NP} \right| = \sum_{N=1}^{\infty} \frac{1}{NP}$$
 is a divergent p-series

c.) ... diverges when
$$p \leq 0$$

because $\lim_{n \to \infty} \frac{(-i)^n}{nP}$ does not exist
so it diverges by the n-th Term Test for Divergence.