Sec 9.5 Absolute Convergence \& the Ratio Test

Def A series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely (i.e. the series is absolutely convergent) if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.

Ex is $\sum_{n=1}^{\infty} 5\left(\frac{-1}{4}\right)^{n}$ absolu-kely convergent?
Ans The corresponding sum of absolute values is $\sum_{n=1}^{\infty}\left|5\left(-\frac{1}{4}\right)^{n}\right|=\sum_{n=1}^{\infty} 5\left(\frac{1}{4}\right)^{n}$, which we know is convergent because it's a geometric series with ratio $\frac{1}{4}$ which is in $(-1,1)$.
So the series $\sum_{n=1}^{\infty} 5\left(-\frac{1}{4}\right)^{n}$ is absolutely convergent.
Theorem:
If a series is absolutely convergent, then it is convergent. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges.

Ex: Determine whether $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}}=-1+\frac{1}{4}-\frac{1}{9}+\frac{1}{16}+\ldots$ Converges.
Sol: The corresponding series of absolute values is $\sum_{n=1}^{\infty}\left|(-1)^{n} \frac{1}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ which is a
convergent p-series. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}}$ also converges. By the above theorem, $\sum_{n=1}(-1)^{n} 1 n^{2}$ also converges.

Ex: Determine whether $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$ converges or $\begin{gathered}\text { diverges }\end{gathered}$
Sol:
(We can apply comparison Test to $\sum\left|\frac{\sin n}{n^{2}}\right|$ with $\sum \frac{1}{n^{2}}$) Let $a_{n}:=\frac{|\sin n|}{n^{2}}$ and $b_{n}:=\frac{1}{n^{2}}$
Since $00 a_{n} \leq b_{n}$ for all $n=1,2,3, \ldots$ and
(ii) $\sum b_{n}$ is a convergent p-series $(p=2)$,
$\sum\left(\frac{\sin n}{n^{2}}\right)$ also converges by the Comparison Test. By def, $\sum \frac{\sin n}{n^{2}}$ absolutely converges.

The theorem tells us that $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$ converges.
$\left(\sum \frac{\sin n}{n^{2}}\right.$ converges and $\sum\left|\frac{\sin n}{n^{2}}\right|$ converges $)$.

Definition Factorial

The factorial of a positive integer n, denoted by n !, is the product of all positive integers less than or equal to n.

- Simplify $4!=$ \qquad 4 3.2.1 $=24$
- $0!\stackrel{\text { def }}{=}$ \qquad .
- Simplify $\frac{(n+1)!}{n!}=\frac{(n+1)(n)(n-1) \cdots 2.1}{n(n-1) \cdots 2.1}=n+1$
in the book, we use ρ

Theorem The Ratio Test Memorize! Suppose $\sum_{n=1}^{\infty} a_{n}$ is an infinite series with positive terms. Consider $r:=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$

- (i) If $0 \leq r<1$, then $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent (we say. " $\sum_{n=1}^{\infty} a_{n} \begin{aligned} & \text { is absolutely } \\ & \text { convergent }\end{aligned}$
- (ii) If $r>1$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent
- (iii) $r=1$, then the Ratio Test is inconclusive

Example: Use the Ratio Test to determine whether the series $\sum_{k=1}^{\infty} \frac{10^{k}}{k!}$ converge.
$\frac{a_{k+1}}{a_{k}}=\frac{\left(\frac{10^{k+1}}{(k+1)!}\right)}{\left(\frac{10^{k}}{k!}\right)}=\frac{10^{k+1}}{(k+1)!} \cdot \frac{k!}{10^{k}}=\frac{10}{k+1}$

Sample answer
$\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{10}{k+1}=0$
$\sum_{k=1}^{\infty} \frac{10^{k}}{k!}$ is convergent divergent by the Ratio Test, since $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=0<1$
(absolutely convergent)

Ex: Is the series $\sum_{n=0}^{\infty} \frac{(2 n)!}{n!n!}$ convergent?

Sol:
Let $a_{n}=\frac{(2 n)!}{n!n!}$

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{(2(n+1))!}{(n+1)!(n+1)!} \cdot \frac{n!n!}{(2 n)!} \\
& =\frac{(2 n+2)!}{(2 n)!} \frac{n!}{(n+1)!} \frac{n!}{(n+1)!} \\
& =(2 n+2)(2 n+1) \frac{1}{n+1} \frac{1}{n+1}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1)}{(n+1)(n+1)}=\lim _{n \rightarrow \infty} \frac{4 n^{2}}{n^{2}}=4>1
$$

By the Ratio Test, the series diverges
(Note we can also use the n-th term Test for Divergence to conclude that this series diverges:

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{(2 n)(2 n-1) \cdots(2 n+1)}{n \cdot n \cdots n} \neq 0
$$

Ex: Apply the Ratio Test to $\sum_{n=1}^{\infty} \frac{4^{n} n!n!}{(2 n)!}$
So 1: Let $a_{n}=\frac{4^{n} n!n!}{(2 n)!}$

$$
\text { So } \begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{4^{n+1}(n+1)!(n+1)!}{(2(n+1))!} \cdot \frac{(2 n)!}{4^{n} n!n!} \\
& =\frac{4^{n+1}}{4^{n}} \frac{(n+1)!}{n!} \frac{(n+1)!}{n!} \frac{(2 n)!}{(2 n+2)!} \\
& =4(n+1)(n+1) \frac{1}{(2 n+2)(2 n+1)} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{4(n+1)(n+1)}{(2 n+2)(2 n+1)} \\
& =\lim _{n \rightarrow \infty} \frac{4 n^{2}}{4 n^{2}}=1
\end{aligned}
$$

The Ratio Test is inconclusive
We can use the $n-t h$ term Test for Divergence: The ratio $\frac{a_{n+1}}{a_{n}}=\frac{24(n+1)(n+1)}{2(n+1)(2 n+1)}=\frac{2 n+2}{2 n+1}$ is always bigger than 1, so $\left\{a_{n}\right\}$ is an increasing sequence. Every term $a_{n} \geqslant a_{1}=2$, so $\lim _{n \rightarrow \infty} a_{n} \neq 0$. By the Test for Divergence, $\sum_{n=1}^{\infty} a_{n}$ diverges.

EXAMPLE 4 Test the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}}$ for absolute convergence. sOLUTION We use the Ratio Test with $a_{n}=(-1)^{n} n^{3} / 3^{n}$:

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\left|\frac{\frac{(-1)^{n+1}(n+1)^{3}}{3^{n+1}}}{\frac{(-1)^{n} n^{3}}{3^{n}}}\right|=\frac{(n+1)^{3}}{3^{n+1}} \cdot \frac{3^{n}}{n^{3}} \\
& =\frac{1}{3}\left(\frac{n+1}{n}\right)^{3}=\frac{1}{3}\left(1+\frac{1}{n}\right)^{3} \rightarrow \frac{1}{3}<1
\end{aligned}
$$

Thus, by the Ratio Test, the given series is absolutely convergent.

