Sec 9.5 Absolute Convergence & the Ratio Test

Def A series
$$\sum_{n=1}^{\infty} a_n$$
 converges absolutely
(i.e. the series is absolutely convergent)
if $\sum_{n=1}^{\infty} [a_n]$ converges.
Ex Is $\sum_{n=1}^{\infty} 5\left(\frac{-1}{4}\right)^n$ absolutely convergent?
Ans The corresponding sum of absolute
values is $\sum_{n=1}^{\infty} |5\left(-\frac{1}{4}\right)^n| = \sum_{n=1}^{\infty} 5\left(\frac{1}{4}\right)^n$,
which we know is convergent
because it's a geometric series
with ratio $\frac{1}{4}$ which is in (-1, 1).
So the series $\sum_{n=1}^{\infty} 5\left(-\frac{1}{4}\right)^n$ is absolutely convergent.
Theorem:

If a series is absolutely convergent, then it is convergent.
If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then $\sum_{n=1}^{\infty} a_n$ also converges.

Ex: Determine whether
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2} = -1 + \frac{1}{4} - \frac{1}{9} + \frac{1}{16} + \dots$$

converges.
Sol: The corresponding series of absolute
values is $\sum_{n=1}^{\infty} \left| (-1)^n \frac{1}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$ which is a
convergent p -series.
By the above theorem, $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ also converges.
By the above theorem, $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ also converges or
diverges
Sol:
(we can apply comparison test to $\sum \left| \frac{\sin n}{n^2} \right|$ with $\sum \frac{1}{n^3} \right|$
Let $a_n := \frac{1 \sin n!}{n^2}$ and $b_n := \frac{1}{n^2}$
Since $b \le a_n \le b_n$ for all $n = 1, 2, 3, \dots$ and
 $\sum \sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ also converges by the comparison test
By def, $\sum \frac{\sin n}{n^2}$ absolutely converges.
($\sum \frac{\sin n}{n^2}$ converges by the Comparison test
 $\sum (\frac{\sin n}{n^2} - \frac{\sin n}{n^2} - \frac{\sin n}{n^2} - \frac{\cos n}{n^2} - \frac{\sin n}{n^2} - \frac{\sin n}{n^2} - \frac{\cos n}{n^2} - \frac{\sin n}{n^2} - \frac{\cos n}{n^2} - \frac{\sin n}{n^2} - \frac{\cos n}{n^2} - \frac{\sin n}$

Definition Factorial

The **factorial** of a positive integer n, denoted by n!, is the **product** of all positive integers less than or equal to n.

• Simplify
$$4! = \frac{4}{4}$$
, $3 \cdot 2 \cdot 1 = 24$
• $0! = \frac{1}{1}$
• Simplify $\frac{(n+1)!}{n!} = \frac{(n+1)(n)(n+1)\cdots 2 \cdot 1}{n(n-1)\cdots 2 \cdot 1} = n+1$
Theorem The Ratio Test Memorize !
Suppose $\sum_{n=1}^{\infty} a_n$ is an infinite series with positive terms. Consider $r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$
• (i) If $0 \le r < 1$, then $\sum_{n=1}^{\infty} |a_n|$ is convergent ($u \le say$, " $\sum_{n=1}^{\infty} a_n$ is absolutely (onvergent)
• (ii) If $r > 1$, then $\sum_{n=1}^{\infty} a_n$ is divergent.
• (iii) $r = 1$, then the Ratio Test is inconclusive

Example: Use the Ratio Test to determine whether the series
$$\sum_{k=1}^{\infty} \frac{10^k}{k!}$$
 converge.

$$\frac{a_{k+1}}{a_k} = \frac{\begin{pmatrix} 10^{k+1} \\ (k+1)! \end{pmatrix}}{\begin{pmatrix} 10^k \\ (k+1)! \end{pmatrix}} = \frac{10^{k+1}}{(k+1)!} \cdot \frac{k!}{10^k} = \frac{10}{k+1}$$

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \int_{l \to \infty} \frac{10^k}{k+1} = 0$$

$$\lim_{k \to \infty} \frac{10^k}{a_k} \text{ is convergent} \text{ divergent by the Ratio Test, since } \frac{\int_{l \to \infty} \frac{a_{k+1}}{a_k} = 0 < 1}{(a_{k+1} + b_k)}$$

EX:	ار	the	series	2 2 n= 0	(2n)! n!n!	Convergent	Ş
-----	----	-----	--------	----------------	---------------	------------	---

Let
$$a_n = \frac{(2n)!}{n! n!}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \lim_{n \to \infty} \frac{4n^2}{n^2} = 4 > 1$$

By the Ratio Test, the series diverges

(Note we can also use the n-th tem Test
for Divergence to conclude that this
series diverges:
$$\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \frac{(2n)(2n-1)\cdots(2n+1)}{n \cdot n \cdots n} \neq 0$$

Ex: Apply the Ratio Test to
$$\sum_{n=1}^{\infty} \frac{4^{n} n! n!}{(2n)!}$$
Sol: Let $a_{n} = \frac{4^{n} n! n!}{(2n)!}$

$$\sum_{n=1}^{\infty} \frac{4^{n} n! n!}{(2n)!} \cdot \frac{(2n)!}{(2n)!}$$

$$= \frac{4^{n+1}}{4^{n}} \frac{(n+1)! (n+1)!}{n!} \cdot \frac{(2n)!}{(2n+2)!}$$

$$= 4 (n+1) (n+1) \frac{1}{(2n+2)} (2n+1)$$

$$\lim_{n \to \infty} \left| \frac{4n+1}{4^{n}} \right|_{n=1}^{\infty} \frac{4(n+1)(n+1)}{(2n+2)(2n+1)}$$

$$\lim_{n \to \infty} \frac{4n^{2}}{(2n+2)(2n+1)} = 1$$

$$\lim_{n \to \infty} \frac{4n^{2}}{4n^{2}} = 1$$

$$\frac{1}{n \to \infty} \frac{4n^{2}}{2n+1} = 1$$

:

.

EXAMPLE 4 Test the series $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$ for absolute convergence.

SOLUTION We use the Ratio Test with $a_n = (-1)^n n^3/3^n$:

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{\frac{(-1)^{n+1}(n+1)^3}{3^{n+1}}}{\frac{(-1)^n n^3}{3^n}}\right| = \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3}$$

$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^3 = \frac{1}{3} \left(1 + \frac{1}{n} \right)^3 \to \frac{1}{3} < 1$$

Thus, by the Ratio Test, the given series is absolutely convergent.