Sec 9.4 Comparison Tests

What we know so far...
$\left\{\begin{array}{l}\text { Geometric series } \\ \text { Telescoping series }\end{array}\right.$
Sec
9.2 nth term Test for Divergence sec
9.3 $\left\{\begin{array}{l}\text { Integral test (bowl need to use) } \\ \text { p-series (harmonic series is a p-series) }\end{array}\right.$ Harmonic series $\sum \frac{1}{k}$

The Comparison Tests

Remember: The tests on this lecture can only be applied to series with positive terms.
The Comparison Test
Theorem The Comparison Test
Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are infinite series with positive terms.

- If $a_{n} \leq b_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges
- If ${ }^{\text {binger }} a_{n} \geq b_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges

$$
E X: \quad \sum_{n=1}^{\infty} \frac{7}{5+2^{n}}
$$

(i) $a_{n}=\frac{7}{5+2^{n}} \leq \frac{7}{2^{n}}=b_{n}$ for all $n=1,2,3 \ldots$
(ii) $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} 7\left(\frac{1}{2}\right)^{n}$ converges because it's a geometric series with ratio $\frac{1}{2}$
So $\sum_{n=1}^{\infty} a_{n}$ converges by the
p-series Test (review). The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is
convergent if \qquad $p>1$

Direct Comparison Test. and divergent if $P=1$ or less than 1.

Ex $\sum_{n=1} \frac{\sqrt{n+1}}{n}$ is convergent or divergent?
Let $a_{n}=\frac{\sqrt{n+1}}{n}$. Try $b_{n}=\frac{\sqrt{n}}{n}=\frac{1}{\sqrt{n}}$
(i) $a_{n}=\frac{\sqrt{n+1}}{n} \geqslant \frac{\sqrt{n}}{n}=b_{n} \quad$ for all $n=1,2,3, \ldots$
(ii) $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ is a divergent p-series $\left(p=\frac{1}{2} \leqslant 1\right)$

So $\sum_{n=1}^{\infty} a_{n}$ diverges by the Comparison Test.

The Comparison Tests

The Limit Comparison Test
Theorem The Limit Comparison Test

Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are infinite series with positive terms. Let $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
(1). If L is a positive number, then (THINK: a_{n} is close to $\underbrace{L b_{n}}_{\text {a positive number }}$ for large n) $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ either both converge or both diverge

2 - If $L=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then (THINK: a_{n} is much smaller than b_{n})
for large n $\sum_{n=1}^{\infty} a_{n}$ also converges
(3. If $\xrightarrow[n \rightarrow \infty]{\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty}$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\binom{$ HANK: a_{n} is much bigger than $b_{n}}{$ for large $n}$ $\sum_{n=1}^{\infty} a_{n}$ also diverges

Example. Using the Limit Comparison Test, determine if the series $\sum_{n=1}^{\infty} \frac{n^{4}-2 n^{2}+3}{2 n^{6}-n+5}$ converges.
Step 0 (Brainstorm).

- Dominant term of the top function:
- Dominant term of the bottom function: $2 n^{6}$ or $n^{6} \quad \frac{n^{4}}{n^{6}}=$
- So, try comparing this series with a p-series $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ where $\mathrm{p}=2$

Step 1. Let $a_{n}=\frac{n^{4}-2 n^{2}+3}{2 n^{6}-n+5}, \quad b_{n}=\frac{1}{n^{2}}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{4}-2 n^{2}+3}{2 n^{6}-n+5} \cdot \frac{n^{2}}{1}=\lim _{n \rightarrow \infty} \frac{n^{6}-2 n^{4}+3 n^{2}}{2 n^{6}-n+5}=\lim _{n \rightarrow \infty} \frac{n^{6}}{2 n^{6}}=\frac{1}{2}
$$

Step 2. Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ is positive , the series $\sum_{n=1}^{\infty} \frac{n^{4}-2 n^{2}+3}{2 n^{6}-n+5}$ converges by the Limit Comparison Test (since $\sum b_{n}=\sum \frac{1}{n^{2}}$ is a convergent p-series)

Ex:
$\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ is convergent or divergent? what bn will work?

EXAMPLE 3 Test the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ for convergence or divergence.
SOLUTION We use the Limit Comparison Test with

$$
a_{n}=\frac{1}{2^{n}-1} \quad b_{n}=\frac{1}{2^{n}}
$$

and obtain

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1 /\left(2^{n}-1\right)}{1 / 2^{n}}=\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n}-1}=\lim _{n \rightarrow \infty} \frac{1}{1-1 / 2^{n}}=1>0
$$

What b_{n} will work?
EXAMPLE 4 Determine whether the series $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}$ converges or diverges.
SOLUTION The dominant part of the numerator is $2 n^{2}$ and the dominant part of the denominator is $\sqrt{n^{5}}=n^{5 / 2}$. This suggests taking

$$
\begin{aligned}
a_{n} & =\frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}} \quad b_{n}=\frac{2 n^{2}}{n^{5 / 2}}=\frac{2}{n^{1 / 2}} \\
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}} \cdot \frac{n^{1 / 2}}{2}=\lim _{n \rightarrow \infty} \frac{2 n^{5 / 2}+3 n^{3 / 2}}{2 \sqrt{5+n^{5}}} \\
& =\lim _{n \rightarrow \infty} \frac{2+\frac{3}{n}}{2 \sqrt{\frac{5}{n^{5}}+1}}=\frac{2+0}{2 \sqrt{0+1}}=1
\end{aligned}
$$

Since $\sum b_{n}=2 \Sigma 1 / n^{1 / 2}$ is divergent $\left(p\right.$-series with $\left.p=\frac{1}{2}<1\right)$, the given series diverges by the Limit Comparison Test.

The Limit Comparison Test
Theorem The Limit Comparison Test
Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are infinite series with positive terms. Let $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
(1). If L is a positive number, then (THINK: a_{n} is close to $\underbrace{L} b_{n}$ for large n)
a positive number
$\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ either both converge or both diverge
(2). If $L=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then ($\left(\begin{array}{c}\infty+1 N K: \\ \\ \left.a_{n} \text { is much smaller than } b_{n}\right) \\ \text { for lar gen } n\end{array}\right.$
$\sum_{n=1}^{\infty} a_{n}$ also converges
(3). If $\xrightarrow[n \rightarrow \infty]{\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty}$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\binom{$ THiNk: a_{n} is much bigger than $b_{n}}{$ for large $n}$ $\sum_{n=1}^{\infty} a_{n}$ also diverges (ref: Sec 11.4 Exercise 41 on page 772).

Example:
Use the Limit Comparison Test to determine whether $\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{3}}$ converges
Let $a_{n}=\frac{\ln n}{n^{3}}$
Brainstorm * $\operatorname{Try} \quad b_{n}=\frac{1}{n^{3}}$
But $\frac{a_{n}}{b_{n}}=\frac{\ln n}{n^{3}} \cdot \frac{n^{3}}{1}=\ln n \rightarrow \infty$ as $n \rightarrow \infty \quad$ (Cart apply $L C T$ with this b_{n}) since $\sum \frac{1}{n^{3}}$ converges

Answer

* Try $b_{n}=\frac{1}{n^{2}}$

$$
\frac{a_{n}}{b_{n}}=\frac{\ln n}{n^{3}} \cdot \frac{n^{2}}{1}=\frac{\ln }{n}
$$

$\lim _{n \rightarrow \infty} \frac{\ln n}{n}=\lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n}\right)}{1}=0 \quad$ (we can apply LCT (2) with this $b_{n}=\frac{1}{n^{2}}$)
Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges,
$\sum_{n=1}^{\infty} a_{n}$ also converges by Limit Comparison Test (2)

Theorem The Limit Comparison Test
Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are infinite series with positive terms. Let $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
(1) If L is a positive number, then (THINK: a_{n} is close to $\underbrace{L b_{n}}_{\text {a positive number }}$ for large n) $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ either both converge or both diverge
2. If $L=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then (THINK: a_{n} is much smaller than b_{n})
$\sum_{n=1}^{\infty} a_{n}$ also converges
3.). If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\binom{$ RINK: a_{n} is much bigger than $b_{n}}{$ for large $n}$ $\sum_{n=1}^{\infty} a_{n}$ also diverges (ref: Sec 11.4 Exercise 41 on page 772).

Example:
Use the Limit Comparison Test to determine whether $\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+1}}{n^{2}-4 n+2}$ converges Brainstorm: $\operatorname{Try} b_{n}=\frac{\sqrt{n^{3}}}{n^{2}}=\frac{n^{\frac{3}{2}}}{n^{2}}=\frac{1}{n^{2-\frac{3}{2}}}=\frac{1}{n^{\frac{1}{2}}}$
or try $b_{n}=\frac{1}{n}$ because 1 want to demonstrate part (3) of
Answer the Limit Comparison Test
Let $a_{n}=\frac{\sqrt{n^{3}+1}}{8 n^{2}-4 n+2} \quad$ Let $b_{n}=\frac{1}{n}$

$$
\begin{aligned}
& \frac{a_{n}}{b_{n}}=\frac{\sqrt{n^{3}+1}}{8 n^{2}-4 n+2} \cdot n=\frac{n \sqrt{n^{3}+1}}{8 n^{2}-4 n+2} \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n \sqrt{n^{3}}}{8 n^{2}}=\lim _{n \rightarrow \infty} \frac{n n^{\frac{3}{2}}}{8 n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{\frac{5}{2}}}{8 n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{\frac{1}{2}}}{8}=\infty
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ is a divergent p-series, $\sum_{n=1}^{\infty} a_{n}$ is also divergent by Limit Comparison Test (3)

