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What we know so far ...

Geometric series

Sec I Telescoping series

9 . 2

nth term Test for Divergence

9 . 3 S
IntegraTest (Don't need to use

Sec

peseries (harmonic series is a p-series)

Harmonic series [I
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Remember: The tests on this lecture can only be applied to series with positive terms. 
 
The Comparison Test 
 
Theorem  The Comparison Test 
 

Suppose  and  are infinite series with positive terms. 

 

• If  and  converges, then . 

 

• If  and  diverges, then . 

 
 
Webwork Problem 4.  
 
 
 
 
 
 
 
 
 
 
 
Webwork Problem 7.  
 

p-series Test (review).  The -series  is  

convergent if  and divergent if . 
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The Limit Comparison Test 
 
Theorem  The Limit Comparison Test 
 

Suppose  and  are infinite series with positive terms. Let . 

 
• If L is a positive number, then 

 
 

 
______________________________________________________________________. 
 

• If  and  converges, then 

 
 
 ___________________________________  (ref:  Sec 11.4 Exercise 40 on page 772). 
 

• If ______________ and  diverges, then 

 
 
 _________________________________  (ref: Sec 11.4 Exercise 41 on page 772). 

 
 

Example. Using the Limit Comparison Test, determine if the series  converges. 

Step 0 (Brainstorm). 
• Dominant term of the top function:  
• Dominant term of the bottom function: 

• So, try comparing this series with a p-series  = where p=2  

Step 1.  
 
 
 
 
 
 
 

Step 2. Since ___________, the series  _____________ by _________________ 
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Ex: is convergent or divergent ?

what bu will work ?

Ex : Z is convergent or divergent ?

What bu will work ?
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