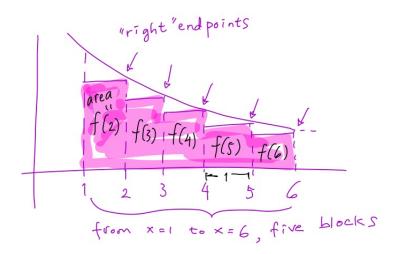
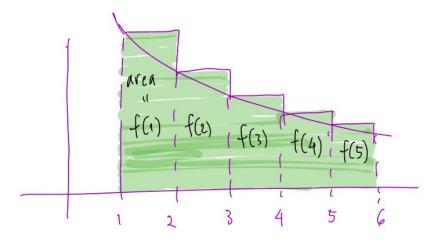
Intuition for the Integral Test:

Suppose f(x) is a continuous and positive function on $[1,\infty)$.

a. Use the **Right Endpoint Rule** with n = 5 to approximate the integral $\int_{1}^{6} f(x) dx$.



b. Use the **Left Endpoint Rule** with n = 5 to approximate the integral $\int_{1}^{6} f(x) dx$.



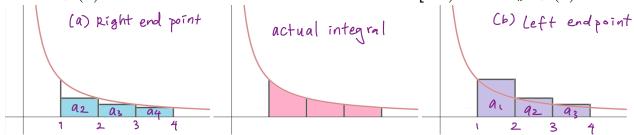
c. Suppose f(x) is **decreasing**, then

the estimated value in part (a) \leq the value of $\int_{1}^{6} f(x) dx$ and

the estimated value in part (b) $\int_{1}^{6} f(x) dx$.

Integral Test

Suppose f(x) is a continuous, positive, decreasing function on $[1,\infty)$ and let $a_n = f(n)$. Then



$$a_2 + a_3 + a_4 \leq \int_1^4 f(x) dx \leq a_1 + a_2 + a_3$$

$$a_2 + \dots + a_6 \leq \int_1^6 f(x) dx \leq a_1 + a_2 + a_5$$
heral,

In general,

$$\sum_{k=2}^{n} a_k \leq \int_1^n f(x) dx \leq \sum_{k=1}^{n-1} a_k$$

The Integral Test

Suppose f is a **continuous**, **positive**, **decreasing** function on $[1, \infty)$ and let $a_n = f(n)$. Then

- If $\int_{1}^{\infty} f(x) dx$ is **convergent**, then $\sum_{n=1}^{\infty} a_{n}$ is Convergent as well.
- If $\int_{1}^{\infty} f(x) dx$ is **divergent**, then $\sum_{n=1}^{\infty} a_{n}$ is clivergent as well

When we use the Integral Test

- It is not necessary to start the series or the integral at n = 1. For example, in testing the series $\sum_{n=4}^{\infty} \frac{1}{(n-3)^2}$ we can use $\int_4^{\infty} \frac{1}{(x-3)^2} dx$.
 - c.j. ok to start at n=4
- It is not necessary that f be always decreasing. What is important is that f be ultimately decreasing. That is, decreasing on $[N,\infty)$ for some number N. Then $\sum_{n=N+1}^{\infty} a_n$

is convergent, which means $\sum_{n=1}^{\infty} a_n$ is convergent.

We should **NOT** infer from the Integral Test that the sum of the series is equal to the value of the integral. In general,

$$\sum_{n=1}^{\infty} a_n \neq \int_{1}^{\infty} f(x) dx.$$
often

often

difficult

easier

Example: Suppose we know that

• f is continuous, positive, and decreasing on $[2, \infty)$, and

• If
$$t > 2$$
, then $\int_2^t f(x) dx = \frac{1}{\ln 2} - \frac{1}{\ln t}$.

Use the Integral Test (above) to determine whether the series $\sum f(k)$ converges or diverges.

Answer First step (Check whether $\int_2^\infty f(x) dx$ converges or diverges.)

$$\int_{2}^{\infty} f(x) dx \stackrel{\text{def}}{=} \lim_{t \to \infty} \int_{2}^{t} f(x) dx$$

$$= \lim_{t \to \infty} \frac{1}{\ln 2} - \frac{1}{\ln t}$$

$$= \frac{1}{\ln 2}$$
So $\int_{2}^{\infty} f(x) dx$ Converges

Second step:

• If $\int_2^\infty f(x) dx$ converges, then $\sum_{k=0}^\infty f(k)$ also converges by the Integral Test.

• If $\int_2^\infty f(x) dx$ diverges, then $\sum_{k=2}^\infty f(k)$ also diverges by the Integral Test.

Since
$$\int_{2}^{\infty} f(x) dx$$
 converges, $\sum_{k=2}^{\infty} f(k)$ also converges.

Question: Does this mean that
$$\sum_{k=2}^{\infty} f(k) = \frac{1}{\ln 2}$$
? No. In general, $\sum_{k=2}^{\infty} f(k) \neq \int_{2}^{\infty} f(k) dx$

Example: Suppose we know that

• g is continuous, positive, and decreasing on $[1, \infty)$, and

• If
$$t > 1$$
, then $\int_{1}^{t} g(x) dx = 2\sqrt{t+5} - 2\sqrt{6}$.

Use the Integral Test (above) to determine whether the series $\sum_{k=1}^{\infty} g(k)$ converges or diverges.

<u>Answer</u> First step:

step:
$$\int_{-\infty}^{\infty} g(x) dx \stackrel{\text{def}}{=} \lim_{t \to \infty} \int_{-\infty}^{t} g(x) dx$$

$$= \lim_{t \to \infty} \left(2\sqrt{t+5} - 2\sqrt{t} \right)$$

$$= \infty$$
So
$$\int_{-\infty}^{\infty} g(x) dx = \int_{-\infty}^{\infty} g(x) dx$$

Second step:

Since
$$\int_{1}^{\infty} g(x) dx$$
 diverges, $\sum_{k=1}^{\infty} g(k)$ also diverges.

For what values of *p* is the improper integral

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

convergent?

Why? If
$$p \neq 1$$
, then if $t > 1$, $\int_{-\infty}^{t} \frac{1}{x^{p}} dx = \int_{-\infty}^{t} x^{-p} dx$

$$\int_{1}^{t} \frac{1}{x^{p}} dx = \int_{1}^{t} x^{-p} dx$$

$$= \frac{x^{-P+1}}{-P+1} \Big|_{x=1}^{x=t}$$

$$= \frac{t^{-P+1}-1}{-P+1}$$

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{p}} dx$$

$$= \lim_{t \to \infty} \frac{t^{-P+1} - 1}{-P+1} = \begin{cases} \frac{0-1}{-P+1} \\ \infty \end{cases}$$

$$t \frac{(\text{negative number})}{\Rightarrow 0}$$
 as $t \Rightarrow \infty$
 $t \frac{(\text{positive number})}{\Rightarrow \infty}$ as $t \Rightarrow \infty$

Note: -p+1 is negative
$$\Longrightarrow$$

p>1

and

-p+1 is positive \Longrightarrow

p<1

Evaluate

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

when p = 1Why?

$$\int_{-\infty}^{\infty} \frac{1}{x} dx = \dots \quad \text{(computation done}$$

in Sec 8.7)

Convergence and Divergence of the p-series

For any number p, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is called a p-series.

If
$$p < 0$$
, then $\lim_{n \to \infty} \frac{1}{n^p} = \infty$. If $p = 0$, then $\lim_{n \to \infty} \frac{1}{n^p} = 1$

If p < 0, then $\lim_{n \to \infty} \frac{1}{n^p} = \infty$. If p = 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 1$.

In either case, $\lim_{n \to \infty} \frac{1}{n^p} \neq 0$, so the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges by the Test for Divergence.

If p > 0, then the function $f(x) = \frac{1}{x^p}$ is continuous, positive and decreasing on $[1, \infty)$.

Previous slide: $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges if p > 1 and diverges if $p \le 1$.

So, $\sum_{n}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if 0 by the Integral Test.

p-series

If $P \leq 0$

IF P>0, use the Integral

Test to check

divergence

reries

To remember this: ** $\frac{2}{n} \frac{1}{n}$ is divergent

the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is

** Other p-series converges, and divergent if $\frac{1}{n}$ and divergent if $\frac{1}{n}$ and $\frac{1}{n}$ The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is

In particular, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent

<u>Practice/Review</u>: Determine whether the series $\sum_{k=1}^{\infty} k^{-\frac{3}{4}}$ converges or diverges.

$$\sum_{k=1}^{\infty} \frac{1}{k^{\frac{3}{4}}}, \quad P = \frac{3}{4} < 1, \quad so \quad \frac{1}{k^{\frac{3}{4}}} > \frac{1}{n}, \quad so \quad \sum \frac{1}{k^{\frac{3}{4}}} \quad diverges$$

<u>Practice/Review</u>: Determine whether the series $\sum_{k=4}^{\infty} \frac{1}{(k-1)^{\sqrt{2}}}$ converges or diverges.

First term is
$$\frac{1}{(4-1)^{\sqrt{2}}} = \frac{1}{3^{\sqrt{2}}}$$
 \Rightarrow $\sum_{k=3}^{-1} \frac{1}{k^{\sqrt{2}}} \Rightarrow so p = \sqrt{2} > 1$

<u>Practice/Review</u>: Which of the following is a convergent *p*-series?

A.)
$$\sum_{k=1}^{\infty} \frac{3}{2^k}$$
 B.) $\sum_{k=1}^{\infty} \frac{3}{\left(\frac{1}{2}\right)^k} r = 2^k$ C.) $\sum_{k=1}^{\infty} \frac{3}{k^2}$ P-series $p = 2 > 1$ of Convergent. Also not a p-series $p = 2 > 1$ of Convergent.

C.)
$$\sum_{k=1}^{\infty} \frac{3}{k^2}$$
• p-series
$$P=2>1$$
• Convergent

D.)
$$\sum_{k=1}^{\infty} \frac{3}{k^{\frac{1}{2}}}$$
P-series
$$P = \frac{1}{2} < 1$$
not convergent

Possible Strategy (so far)

Assume $\sum_{n=0}^{\infty} a_n$ is an infinite series with $a_n > 0$ for all n.

1. Check if it is a **Geometric Series**.

No! Go to (2).

Yes! If $r \ge 1$ or $r \le -1$, then the series diverges. If -1 < r < 1, then $S = \frac{a_1}{1-r}$.

2. Check if it is a *p*-Series.

No! Go to (3).

Yes! If $p \le 1$, then the series diverges. If p > 1, then the series converges.

3. Check if $\lim a_k = 0$. (L'Hôpital's Rule is used if necessary)

Yes! Then the test is inconclusive. Go to (4).

No! Then the series diverges by the **Test for Divergence**.

4. Check if it is a **Telescoping Series**.

No! Go to (5).

Yes! Evaluate S_n by cancelling middle terms and $S = \lim_{n \to \infty} S_n$.

More tests to come

Extra practice questions:

Use one of the above methods to determine whether the following series converge.

a)
$$\sum_{n=1}^{\infty} \frac{1}{(\ln 2)^n}$$

Divergent a)
$$\sum_{n=1}^{\infty} \frac{1}{(\ln 2)^n}$$
 Geometric series ratio is $\frac{1}{\ln 2}$ $\ln 2 < \ln e = 1$ so $1 < \frac{1}{\ln 2}$ Divergent by b) $\sum_{n=1}^{\infty} \frac{2^n}{n+1}$ Neither a geometric series nor p -series $\lim_{n \to \infty} \frac{2^n}{n+1} = \lim_{n \to \infty} \frac{(\ln 2)}{1} = \infty$

$$\sum_{n=1}^{\infty} \frac{2^n}{n+1}$$

Neither a geometric series nor
$$p$$
-series
$$\lim_{n\to\infty} \frac{2^n}{n+1} = \lim_{n\to\infty} \frac{(\ln 2)}{1} = \infty$$

c)
$$\sum_{n=1}^{\infty} \frac{2}{n\sqrt{n}}$$

$$p$$
-series $P = \frac{3}{2} > 1$

Convergent c)
$$\sum_{n=1}^{\infty} \frac{2}{n\sqrt{n}}$$
 P -series $P = \frac{3}{2} > 1$

Divergent d) $\sum_{n=1}^{\infty} \ln\left(\frac{n+1}{n}\right) = \sum_{n=1}^{\infty} \ln(n+1) - \ln(n)$ Telescoping Series