Infinite Series

If we add the terms of a sequence $\left\{a_{k}\right\}_{k=1}^{n}$, we get an expression of the form

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n} \quad a_{1}+a_{2}+a_{3} \quad a_{2}+a_{3}+a_{4}+a_{5}
$$

which is called a (finite) series and is also denoted by
means "Sum"

$$
\sum_{k=1}^{n} a_{k} .
$$

$$
\sum_{k=1}^{3} a_{k} \sum_{\substack{\text { specify } \\ \text { starting } \\ \text { index }}}^{5} a_{k}
$$

Does it make sense to talk about the sum of infinitely many terms? Consider the partial sums

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3},
\end{aligned}
$$

and, in general,

$$
S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k} . \quad \begin{array}{r}
\text { "First, take the sum of } \\
\text { the first } n \text { terms" }
\end{array}
$$

If the sequence $\left\{S_{n}\right\}_{n=1}^{\infty}=\left\{S_{1}, S_{2}, S_{3}, \ldots\right\}$ of partial sums has limit L, then we say that the infinite series converges to L and we write same meaning

$$
\lim _{n \rightarrow \infty} S_{n}=L
$$

If the sequence $\left\{S_{n}\right\}_{n=1}^{n}$ of partial sums diverges, then we say that the infinite series diverges.

Summary(Notation)

- A sequence converges?
$\lim _{n \rightarrow \infty} S_{n}=L, \sum_{k=1}^{\infty} a_{k}={\underset{\text { a number }}{L},}_{\substack{4}}^{\infty} a_{k} a_{k}$ converges $\left\lvert\, \begin{aligned} & \sum_{k=1}^{\infty} a_{k} \text { diverges }\end{aligned}\right.$
An important family of infinite series is the geometric series.

Visual example

Area of

$|x|$ square is 1
So it seems like
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots$
converges to 1

- A geometric sequence has the property that each term is obtained by multiplying the previous term by a fixed constant, called the ratio, e.g. $\frac{\{5,10,20,40,80,160, \ldots\}}{\text { ratio }=2}$.
- Given a geometric sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$, if the ratio is r, then the k-th term can be expressed

$$
\text { as } a_{k}=\underbrace{a_{1}}_{\text {first term }} r^{k-1}
$$

$$
\text { , e.g. } a_{k}=5 \quad 2^{k-1}
$$

- When \qquad , the sequence converges.

Geometric Series

Partial Sum of Geometric Series (Textbook Example 2)

Given a geometric sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$, if the ratio is r, then the sum of the first n terms

$$
\begin{array}{r}
\quad \begin{array}{r}
\text { def } \\
S_{n} \\
= \\
1
\end{array}+a_{1} r+a_{1} r^{2}+\cdots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
\text { e.g. } S_{4}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}
\end{array}
$$

is (see below)

Why?

Furthermore, since

$$
\begin{aligned}
& S_{n}-r S_{n}=\underbrace{L_{n}(1-r)=a_{1}(1-r)}_{\text {Therefore, } S_{n}-r S_{n} \underline{\underline{\geq}} a_{1}-a_{1} r^{n},} \\
& S_{n}(1-r)=a_{1}\left(1-r^{n}\right) \\
& \text { hence } S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \text { if } r \neq 1 \text {. }
\end{aligned}
$$

Theorem (Geometric Series)
Let r and a be real numbers.
If $|r|<1$, then $\sum_{k=1}^{\infty} a r^{k-1}=a \frac{1}{1-r}$
Note: In general, it's - very hard to If $|r| \geq 1$, then $\sum_{k=1}^{\infty} a r^{k-1}$ diverges $\quad \mid$ compute sums of (convergent) series

- The geometric sequence converges if and only if

$$
\begin{aligned}
& -1<r \leqslant 1 \quad \text { (including 1) } \\
& -1<r<1 \quad \text { (not including 1) }
\end{aligned}
$$

- The geometric series converges if and only if
- Sum of a convergent series may change if you change your starting index:

$$
\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)_{\substack{k \\ \text { term }}}^{k}\left(\frac{1}{2}\right)+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\ldots=, \text { the area of a } 1 \times 1 \text { square. } \sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}=
$$

 first term
If $|r|<1$, then $\sum_{k=1}^{\infty} a r^{k}=a r+a r^{2}+a r^{3}+\ldots=\operatorname{ar}\left[1+r+r^{2}+\ldots\right]=\operatorname{ar} \frac{1}{1-r}$ by above Thu (Geometric series)
Example: Evaluate the (geometric) series $\sum_{k=1}^{\infty} \frac{3^{k}}{4^{k+3}}$ or state that it diverges.
step a.) State the test you plan to use: (Geometric Series The (above)
step b.) (i) Write out the first 4 (four) terms of $\sum_{k=1}^{\infty} \frac{3^{k}}{4^{k+3}}$.

(l
a $a r^{\prime} a r^{2} a r^{3} \quad r_{0} t e$: To go from $a r^{\prime}$ to $a r^{2}$, multiply by r

$$
a=\frac{3}{4^{4}}
$$

$$
r=\frac{3}{4}
$$

step c.) After finding the ratio r, determine whether this geometric series converges or not. (
Since $r=\frac{3}{4}$ is in $(-1,1)$, the series converges to a $\frac{1}{1-r}=\frac{3}{4^{4}}\left(\frac{1}{1-\frac{3}{4}}\right)=\frac{3}{4^{3}}$

Telescoping Series
Find the sum of the "telescoping" series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ by partial fraction decomposition
Sol:
Write $\frac{1}{k(k+1)} \stackrel{\sigma}{=} \frac{1}{k}-\frac{1}{k+1}$

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\sum_{k=1}^{\infty} \frac{1}{k}-\frac{1}{k+1} \\
& \begin{aligned}
S_{4}=\sum_{k=1}^{4} \frac{1}{k}-\frac{1}{k+1} & =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right) \\
& =1-\frac{1}{5}
\end{aligned}
\end{aligned}
$$

In general,

$$
\begin{aligned}
& \begin{aligned}
& S_{n}=\sum_{k=1}^{n} \frac{1}{k}-\frac{1}{k+1}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
&=1-\frac{1}{n+1} \\
& \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} 1-\frac{1}{n+1}=1-\lim _{n \rightarrow \infty} \frac{1}{n+1}=1-0=1
\end{aligned} \\
& \text { So } \sum_{k=1}^{\infty} \frac{1}{k(k+1)}=1
\end{aligned}
$$

The series converges to 1 .

Telescoping Series

Evaluate the series $\sum_{k=1}^{\infty} \ln \left(\frac{k}{k+4}\right)$ or state that it diverges.

Sol:

step a.) Find a formula for the k-th term of the sequence of partial sums $\left\{S_{n}\right\}$

$$
\begin{aligned}
& S_{n}=\sum_{k=1}^{n} \ln (k)-\ln (k+4) \\
& =\underset{\underbrace{k=1}}{\ln (1)}-\stackrel{1+4}{\ln (5)}+\ln (2)-{ }^{2+4} \ln ^{2+4}(6)+\ln (3)-\ln ^{3+4}(7)+\ln (4)-\ln ^{4+4}(8) \\
& +\ln (5)-\underset{5+4}{\ln (9)}+\ln (6)-\underset{6+4}{\ln (10)}+\ln (7)-\underset{7+4}{\ln (11)}+\ln (8)-\ln _{8+4}^{(12)} \\
& +\cdots \\
& \left.-\ln (n-1) \quad \begin{array}{l}
k=n-4 \\
\ln (n-4)
\end{array}\right) \ln \left(\begin{array}{l}
n
\end{array}\right)+\ln ^{k=n-3}(n-3)-\ln (n+1)+\ln \binom{k=n-2}{n-2)} \ln (n+2) \\
& +\ln _{k=n-1}^{(n-1)}-\ln (n+3)+\ln _{k=n}(n)-\ln (n+4) \\
& =\underbrace{\ln (2)+\ln (3)+\ln (4)}_{\ln (2.3 .4)}-\ln (n+1)-\ln (n+2)-\ln (n+3)-\ln (n+4)
\end{aligned}
$$

step b.) Evaluate $\lim _{n \rightarrow \infty} S_{n}$ to obtain the sum of the series, or state that the series diverges.

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \underbrace{\ln (24)}_{\text {a number }}-\underbrace{\ln (n+1)-\ln (n+2)-\ln (n+3)-\ln (n+4)}_{\text {So to }-\infty \text { as } n \rightarrow \infty}=-\infty
$$

Note:
In general, $\sum_{k=1}^{n} f(k)-f(k+4)=f(1)+f(2)+f(3)+f(4)$

$$
-f(n+1)-f(n+2)-f(n-3)-f(n-4)
$$

If the series $\sum_{k=1}^{\infty} a_{k}$ is convergent, then $\lim _{k \rightarrow \infty} a_{k}=0$

What does this theorem say? Recall that to any series $\sum a_{n}$ we associate two sequences:

- the sequence $\left\{a_{k}\right\}$ of its terms, and
- the sequence $\left\{S_{n}\right\}$ of its partial sums.

The theorem says that if $\sum_{k=1}^{n} a_{k}$ converges to a number S, then

$$
\lim _{n \rightarrow \infty} S_{n}=\mathrm{S} \quad \text { and } \lim _{k \rightarrow \infty} a_{k}=0
$$

Caution: If the series $\sum_{k=1}^{\infty} a_{k}$ is divergent, then $\lim _{k \rightarrow \infty} a_{k}$ we cannot say - it depends
Vocab What is the contrapositive of a statement? Statement: IF P THEN Q
Contrapositive of this statement is "IF (NOT Q) THEN (NOT P)"
The contrapositive is equivalent to the original statement
Egg. Statement: IF UML has snow day, THEA it is snowing Contrapositive: IF it's not snowing, THE EN UML has no snow day.

Note: If it's snowing, we don't know whether there will be a snow day.
nth-Term Test for Divergence:
If $\lim _{k \rightarrow \infty} a_{k} \neq 0$ OR if $\lim _{k \rightarrow \infty} a_{k}$ does sr exist, then the series $\sum_{k=1}^{\infty} a_{k}$ is NOT convergent.

This statement is the contrapositive of the Thu at the top of this page

Caution: If $\lim _{k \rightarrow \infty} a_{k}=0$, then the test is inconclusive. We cannot use this test to determine convergence/divergence of $\sum a_{k}$.

Example: Use the Test for Divergence to determine whether the series $\sum_{k=1}^{\infty} \frac{k}{2 k+1}$ diverges, or state that the Test for Divergence is inconclusive.

First step:

$$
\lim _{k \rightarrow \infty} \frac{k}{2 k+1}=\lim _{k \rightarrow \infty} \frac{\left(\frac{k}{k}\right)}{\left(\frac{2 k}{k}\right)+\frac{1}{k}}=\lim _{k \rightarrow \infty} \frac{1}{2+\frac{1}{k}}=\frac{1}{2}
$$

Second step: The Test for Divergence is conclusive inconclusive

$$
\text { Since } \lim _{k \rightarrow \infty} \frac{k}{2 k+1} \neq 0 \text {, the series } \sum \frac{k}{2 k+1} \text { is divergent }
$$

Example: Use the Test for Divergence to determine whether the series $\sum_{k=1}^{\infty} \frac{k}{k^{2}+1}$ diverges, or state that the Test for Divergence is inconclusive.
First step:

$$
\lim _{k \rightarrow \infty} \frac{k}{k^{2}+1}=\lim _{k \rightarrow \infty} \frac{1}{2 k}=0
$$

Second step: The Test for Divergence is conclusive/inconclusive Test for Divergence doesńt help.

Properties of Convergent Series

Suppose c is a number. If $\sum a_{k}$ and $\sum b_{k}$ are convergent series, \ldots

- then the series $\sum c a_{k}$ also converges and $\sum c a_{k}=c \sum a_{k}$
- then the series $\sum a_{k}+\sum b_{k}$ also converges and $\sum a_{k}+b_{k}=\sum a_{k}+\sum b_{k}$

Example: Evaluate $\sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}+\frac{1}{2^{n}}\right)$ or state that it diverges.
step a.) First compute $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ to get 1 .

$$
\text { Earlier } \varepsilon x
$$

step b.) Next, compute $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ to get 1 .

$$
\text { Earlier } \varepsilon_{x}
$$

step c.) $\quad \sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}+\frac{1}{2^{n}}\right)=3\left(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\right)+\left(\sum_{n=1}^{\infty} \frac{1}{2^{n}}\right)=3 \cdot 1+1$.
Apply
Properties

Repeating Decimals
Example:
Write $0.9 \overline{34}=0.93434343434 \ldots$ as a geometric series and express its value as a fraction.
a.) Can you write $.9 \overline{34}=.93434343434 \ldots$ as geometric series?

$$
0.9+\frac{34}{10^{3}}+\frac{34}{10^{5}}+\frac{34}{10^{7}}+\ldots
$$

b.) If $0.0 \overline{34}=0.03434343434 \cdots=\sum_{k=1}^{\infty} a r^{k-1}$, what is a ?

$$
\text { First term } a=\frac{34}{10^{3}}
$$

c.) If $0.0 \overline{34}=0.03434343434 \cdots=\sum_{k=1}^{\infty} a r^{k-1}$, what is r ?

$$
\begin{aligned}
& r=\frac{1}{100} \quad \text { The constant we multiply by } \\
& \text { to get to the next term }
\end{aligned}
$$

d.) Is $|r|<1$?

$$
y \operatorname{s}\left|\frac{1}{10^{2}}\right|<1
$$

e.) Use the geometric series found in the previous parts to convert $0.9 \overline{34}=0.93434343434 \ldots$ into a fraction.

$$
\begin{aligned}
0.9 \frac{34}{\text { into a fraction. }} & =0.9+\frac{34}{10^{3}}+\frac{34}{10^{5}}+\frac{34}{10^{7}}+\ldots \\
& =0.9+\frac{34}{10^{3}}\left[1+\frac{1}{100}+\frac{1}{100^{2}}+\frac{1}{100^{3}}+\ldots\right] \\
& =0.9+\frac{34}{10^{3}} \cdot \frac{1}{1-\frac{1}{100}}=0.9+\frac{34}{10^{3}} \cdot \frac{1}{\left(\frac{99}{100}\right)}
\end{aligned}
$$

f.) Perform a reality check, for example, verify that your fraction is between $\frac{9}{10}$ and 1 .

$$
=0.9+\frac{34}{990}=\frac{9}{10}+\frac{34}{990}=
$$

Repeating Decimals
Example:
Write as a geometric series then express its value as a fraction.

- $0 . \overline{38}$
$1.2 \overline{38}$
- $0.2 \overline{74}$
$1.2 \overline{74}$
Solutions below

Solutions

1.

$$
\begin{aligned}
0 . \overline{38} & =0.383838 \cdots \\
& =\frac{38}{100}+\frac{38}{100^{2}}+\frac{38}{100^{3}}+\cdots \\
& =\frac{\frac{38}{100}}{1-\frac{1}{100}} \\
& =\frac{38}{99}
\end{aligned}
$$

2.

$$
\begin{aligned}
1 . \overline{38} & =1+0 . \overline{38} \\
& =1+\frac{38}{99} \\
& =\frac{99+38}{99} \\
& =\frac{(100-1)+38}{99} \\
& =\frac{138-1}{99}
\end{aligned}
$$

3.

$$
\begin{aligned}
0 . \overline{274} & =0.2+0.0747474 \cdots \\
& =\frac{2}{10}+\frac{74}{1000}+\frac{74}{1000 \times 100}+\frac{74}{1000 \times 100^{2}}+\cdots \\
& =\frac{2}{10}+\frac{\frac{74}{1000}}{1-\frac{1}{100}} \\
& =\frac{2}{10}+\frac{74}{990} \\
& =\frac{2 \times 99+74}{990} \\
& =\frac{2 \times(100-1)+74}{990} \\
& =\frac{274-2}{990}
\end{aligned}
$$

4.

$$
\begin{aligned}
1.2 \overline{74} & =1+0.2 \overline{74} \\
& =1+\frac{274-2}{990} \\
& =\frac{990+274-2}{990} \\
& =\frac{(1000-10)+274-2}{990} \\
& =\frac{1274-12}{990}
\end{aligned}
$$

