Infinite Series

If we add the terms of a sequence $\{a_k\}_{k=1}^n$, we get an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n$$
 $a_1 + a_2 + a_3$ $a_2 + a_3 + a_4 + a_5$

which is called a (finite) series and is also denoted by

means "Sum"

 $\sum_{k=1}^{n} a_k.$

Does it make sense to talk about the sum of infinitely many terms? Consider the partial sums

$$S_1 = a_1$$

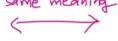
 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$

and, in general,

$$S_n=a_1+a_2+a_3+\cdots+a_n=\sum_{k=1}^n a_k.$$
 "First, take the sum of the first n terms"

If the sequence $\{S_n\}_{n=1}^{\infty} = \{S_1, S_2, S_3, \dots\}$ of partial sums has limit L, then we say that the infinite series **converges** to L and we write

lim Sn=L



$$\sum_{k=1}^{\infty} a_k = L$$

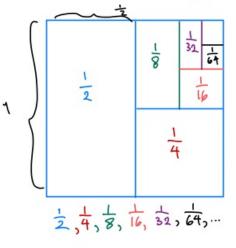
If the sequence $\{S_n\}_{n=1}^n$ of partial sums diverges, then we say that the infinite series **diverges**.

Summary(Notation)	
 A sequence converges? Lim a_k = L , {a_k} converges k→∞ (a number) 	A sequence diverges? Lim ak doesn't exist, [ak] diverges
• A series converges? $\lim_{n\to\infty} S_n = L$, $\sum_{k=1}^{\infty} a_k = L$, $\sum_{k=1}^{\infty} a_k$ converges	lim s, doesn't exist, A series diverges? \[\sum_{k=1}^{\infty} a_k \] diverges

An important family of infinite series is the geometric series.

Visual example

1xl cquare



Area of 1×1 square is 1 So it seems like $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ converges to 1

- A geometric sequence has the property that each term is obtained by multiplying the previous term by a fixed constant, called the ratio, e.g. $\{5, 10, 20, 40, 80, 160, \dots\}$.
- Given a geometric sequence $\{a_k\}_{k=1}^{\infty}$, if the ratio is r, then the k-th term can be expressed as $a_k = \underbrace{\alpha_1}_{\text{first term}}^{k-1}$, e.g. $\underline{\alpha_k} = 5 \ 2^{k-1}$ for k = 1, 2, 3, ...
- $-1 < r \le 1$, the sequence converges. When

Geometric Series

Partial Sum of Geometric Series (Textbook Example 2)

Given a geometric sequence $\{a_k\}_{k=1}^{\infty}$, if the ratio is r, then the sum of the first n terms

Given a geometric sequence
$$\{a_k\}_{k=1}^{\infty}$$
, if the ratio is r , then the sum of the first n term
$$S_n \stackrel{\text{def}}{=} a_1 + a_1 r + a_1 r^2 + \dots + a_1 r^{n-2} + a_1 r^{n-1}$$
 e.g. $S_4 = a_1 + a_1 r + a_1 r^2 + a_1 r^3$ is
$$\underbrace{\left(\text{See be}(\omega)\right)}_{}$$
.

Why?

$$S_{n} = a_{1} + a_{1}r + a_{1}r^{2} + a_{1}r^{3} + \dots + a_{1}r^{n-2} + a_{1}r^{n-1} + a_{1}r^{n$$

Furthermore, since

$$\lim_{n\to\infty} r^n = \begin{cases} \frac{0}{-1} & \text{for } |r| < 1 \\ \frac{1}{-1} & \text{for } |r| < 1 \end{cases}, \text{ we have } \lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{|-r^n|}{|-r|} = \begin{cases} \frac{a_1 \frac{|-r|}{|-r|}}{|-r|} & \text{for } |r| < 1 \\ \frac{1}{-1} & \text{for } |r| > 1 \end{cases}$$

$$\frac{DNE}{1} & \text{for } |r| > 1$$

Theorem (Geometric Series)

If |r| < 1, then $\sum_{k=1}^{\infty} ar^{k-1} = a$ If $|r| \geq 1$, then $\sum_{i=0}^{\infty} ar^{k-1}$ diverges

Note: In general, it's

- $-1 < r \le 1$ (including 1) The geometric sequence converges if and only if
- The geometric series converges if and only if

-1 < r < 1 (not including 1)

Sum of a convergent series may change if you change your starting index:
$$\sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^{k} = \left(\frac{1}{2}\right)^{k} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots = \underbrace{\phantom{\frac{1}{2}}}_{k=0} \left(\frac{1}{2}\right)^{k} = \underbrace{\phantom{\frac{1}{2}}}_{$$

 $\frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots = 1 + 1 = 2 \quad \text{, the area of a} \quad 1 \times 2 \quad \text{rectangle.}$ If |r| < 1, then $\sum_{k=1}^{\infty} ar^k = ar + ar^2 + ar^3 + \dots = ar \left[1 + r + r^2 + \dots \right] = ar \quad 1 - r$

Example: Evaluate the (geometric) series $\sum_{k=1}^{\infty} \frac{3^k}{4^{k+3}}$ or state that it diverges.

step a.) State the test you plan to use: Geometric Series Thm (above)

step b.) (i) Write out the first 4 (four) terms of
$$\sum_{k=1}^{\infty} \frac{3^k}{4^{k+3}}$$
.

Note: To go from $\frac{3^2}{4^5}$ to $\frac{3^3}{4^6}$, multiply by $\frac{3}{4}$

(ii) Write our the first 4 (four) terms of $\sum_{k=0}^{\infty} ar^{k-1}$.

(iii) Compare terms to find an a and an r so that $\sum_{k=1}^{\infty} \frac{3^k}{4^{k+3}} = \sum_{k=1}^{\infty} ar^{k-1}.$ $r = \frac{3}{4^k}$

step c.) After finding the ratio r, determine whether this geometric series converges or not. (1)

Telescoping Series

Find the sum of the "telescoping" series
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$

Sol:
Write
$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \frac{1}{k} - \frac{1}{k+1}$$

$$S_{4} = \sum_{k=1}^{4} \frac{1}{k} - \frac{1}{k+1} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right)$$
$$= 1 - \frac{1}{5}$$

In general,

$$S_{n} = \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{k+1} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} 1 - \frac{1}{n+1} = 1 - \lim_{n\to\infty} \frac{1}{n+1} = 1 - 0 = 1$$

$$\int_0^\infty \frac{1}{k(k+1)} = 1$$

The series converges to 1.

Telescoping Series

Evaluate the series $\sum_{k=1}^{\infty} \ln \left(\frac{k}{k+4} \right)$ or state that it diverges.

Sol:

step a.) Find a formula for the k-th term of the sequence of partial sums $\{S_n\}$

$$S_n = \sum_{k=1}^n \ln(k) - \ln(k+4)$$

$$= \underbrace{\ln(1) - \ln(5) + \ln(2) - \ln(6) + \ln(3) - \ln(7) + \ln(4) - \ln(8)}_{5+4} + \ln(5) - \ln(9) + \ln(6) - \ln(10) + \ln(7) - \ln(11) + \ln(8) - \ln(12)$$

$$5+4$$

$$+ \dots$$

$$-\ln(n-1) + \ln(n-4) - \ln(n) + \ln(n-3) - \ln(n+1) + \ln(n-2) - \ln(n+2) + \ln(n-1) - \ln(n+3) + \ln(n) - \ln(n+4) + \ln(n-1) - \ln(n+3) + \ln(n) - \ln(n+4) + \ln(n-1) - \ln(n+4) + \ln(n-1) + \ln(n-1)$$

$$= \underbrace{\ln(2) + \ln(3) + \ln(4)}_{\mathbb{J}_n(2\cdot 2\cdot 4)} - \ln(n+1) - \ln(n+2) - \ln(n+3) - \ln(n+4)$$
 step b.) Evaluate $\lim_{n\to\infty} S_n$ to obtain the sum of the series, or state that the series diverges.

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \ln(24) - \ln(n+1) - \ln(n+2) - \ln(n+3) - \ln(n+4) = -\infty$$
a number
$$g_0 \text{ to } -\infty \text{ as } n\to\infty$$

Note:

In general,
$$\sum_{k=1}^{n} f(k) - f(k+4) = f(i) + f(2) + f(3) + f(4)$$

- $f(n+1) - f(n+2) - f(n-3) - f(n-4)$

Thm

If the series $\sum_{k=1}^{\infty} a_k$ is convergent, then $\lim_{k \to \infty} a_k = 0$

What does this theorem say? Recall that to any series $\sum a_n$ we associate two sequences:

- the sequence $\{a_{\mathbf{k}}\}$ of its **terms**, and
- the sequence $\{S_n\}$ of its **partial sums**.

The theorem says that if $\sum_{k=1}^{n} a_{k}$ converges to a number S, then

 $\lim_{n \to \infty} S_n = \underbrace{\mathsf{S}}_{n \to \infty} \quad \text{and} \quad \lim_{k \to \infty} a_k = \underbrace{\mathsf{O}}_{n \to \infty}$

Caution: If the series $\sum_{k=1}^{\infty} a_k$ is divergent, then $\lim_{k\to\infty} a_k$ we cannot say - if depends What is the contrapositive of a statement? Statement: IF P THEN Q

Contrapositive of this statement is "IF (NOT Q) THEN (NOT P)"

The contrapositive is equivalent to the original statement

E.g. Statement: IF UML has snow day, THEN IT IS snowing Contrapositive: IF it's not snowing, THEN UML has no snow day.

Note: If it's snowing, we don't know whether there will be a snow day.

11th-Term Test for Divergence:

If $\lim_{k\to\infty} a_k \neq 0$ or if $\lim_{k\to\infty} a_k$ doesn't exist, then the series $\sum_{k=1}^{\infty} a_k$ is <u>NOT</u> convergent.

This statement is the contrapositive of the Thm at the top of this page

Caution: If $\lim_{k\to\infty} a_k = \mathcal{O}$, then the test is inconclusive. We cannot use this test to determine convergence/divergence of $\sum a_k$.

Example: Use the Test for Divergence to determine whether the series $\sum_{k=1}^{\infty} \frac{k}{2k+1}$ diverges, or state that the Test for Divergence is inconclusive.

First step:

$$\lim_{k \to \infty} \frac{k}{2k+1} = \lim_{k \to \infty} \frac{\binom{k}{k}}{\binom{2k}{k} + \frac{1}{k}} = \lim_{k \to \infty} \frac{1}{2 + \frac{1}{k}} = \frac{1}{2}$$

Second step: The Test for Divergence is conclusive) inconclusive

Since
$$\lim_{k\to\infty} \frac{k}{2k+l} \neq 0$$
, the series $\sum \frac{k}{2k+l}$ is divergent

Example: Use the Test for Divergence to determine whether the series $\sum_{k=1}^{\infty} \frac{k}{k^2+1}$ diverges, or state that the Test for Divergence is inconclusive.

First step:

$$\lim_{k \to \infty} \frac{k}{k^2 + 1} = \lim_{k \to \infty} \frac{1}{2k} = 0$$

$$\lim_{k \to \infty} \frac{k}{k^2 + 1} = \lim_{k \to \infty} \frac{1}{2k} = 0$$

Second step: The Test for Divergence is conclusive/(inconclusive) Test for Divergence doesn't help

Properties of Convergent Series

Suppose c is a number. If $\sum a_k$ and $\sum b_k$ are convergent series, ...

- then the series $\sum c \ a_k$ also **converges** and $\sum c \ a_k = \sum a_k$
- then the series $\sum a_k + \sum b_k$ also **converges** and $\sum a_k + b_k = \sum a_k + \sum b_k$

Example: Evaluate
$$\sum_{n=1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right)$$
 or state that it diverges.

step a.) First compute $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ to get 1.

step b.) Next, compute $\sum_{n=1}^{\infty} \frac{1}{2^n}$ to get 1. Farlier Ex

step c.)
$$\sum_{n=1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right) = 3 \left(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \right) + \left(\sum_{n=1}^{\infty} \frac{1}{2^n} \right) = 3 \cdot 1 + 1.$$

Apply Properties

Repeating Decimals

Example:

a.) Can you write $.9\overline{34} = .93434343434...$ as geometric series?

$$0.9 + \frac{34}{10^3} + \frac{34}{10^5} + \frac{34}{10^7} + \dots$$

b.) If $0.0\overline{34} = 0.03434343434 \cdots = \sum_{k=1}^{\infty} ar^{k-1}$, what is a?

First term
$$Q = \frac{34}{16^3}$$

c.) If $0.0\overline{34} = 0.03434343434 \cdots = \sum_{k=1}^{\infty} ar^{k-1}$, what is r?

- d.) Is |r| < 1?

 Yes $\left| \frac{1}{10^2} \right| < 1$
- e.) Use the geometric series found in the previous parts to convert $0.9\overline{34} = 0.9343434343434...$ into a fraction.

$$0.934 = 0.9 + \frac{34}{10^3} + \frac{34}{10^5} + \frac{34}{10^7} + \dots$$

$$= 0.9 + \frac{34}{10^3} \left[1 + \frac{1}{100} + \frac{1}{100^2} + \frac{1}{100^3} + \dots \right]$$

$$= 0.9 + \frac{34}{10^3} \cdot \frac{1}{1 - \frac{1}{100}} = 0.9 + \frac{34}{10^3} \cdot \frac{1}{\frac{99}{100}}$$

f.) Perform a reality check, for example, verify that your fraction is between $\frac{9}{10}$ and 1.

$$=0.9+\frac{34}{990}=\frac{9}{10}+\frac{34}{990}=-$$

Repeating Decimals

Example:

Write as a geometric series then express its value as a fraction.

• 0.38

 $1.2\overline{38}$

• $0.2\overline{74}$

 $1.2\overline{74}$

Solutions below

1.

$$0.\overline{38} = 0.383838 \cdots$$

$$= \frac{38}{100} + \frac{38}{100^2} + \frac{38}{100^3} + \cdots$$

$$= \frac{\frac{38}{100}}{1 - \frac{1}{100}}$$

$$= \frac{38}{99}$$

2.

$$1.\overline{38} = 1 + 0.\overline{38}$$

$$= 1 + \frac{38}{99}$$

$$= \frac{99 + 38}{99}$$

$$= \frac{(100 - 1) + 38}{99}$$

$$= \frac{138 - 1}{99}$$

3.

$$0.2\overline{74} = 0.2 + 0.0747474 \cdots$$

$$= \frac{2}{10} + \frac{74}{1000} + \frac{74}{1000 \times 100} + \frac{74}{1000 \times 100^2} + \cdots$$

$$= \frac{2}{10} + \frac{\frac{74}{1000}}{1 - \frac{1}{100}}$$

$$= \frac{2}{10} + \frac{74}{990}$$

$$= \frac{2 \times 99 + 74}{990}$$

$$= \frac{2 \times (100 - 1) + 74}{990}$$

$$= \frac{274 - 2}{990}$$

4.

$$1.2\overline{74} = 1 + 0.2\overline{74}$$

$$= 1 + \frac{274 - 2}{990}$$

$$= \frac{990 + 274 - 2}{990}$$

$$= \frac{(1000 - 10) + 274 - 2}{990}$$

$$= \frac{1274 - 12}{990}$$