9.10 Applications of Taylor Series

$$
\begin{aligned}
& (1+x)^{\circ}= \\
& 1 \\
& 1+x \\
& (1+x)^{1}= \\
& 1+2 x+x^{2} \\
& (1+x)^{2}= \\
& 1+3 x+3 x^{2}+x^{3} \\
& (1+x)^{3}= \\
& (1+x)^{4}= \\
& (1+x)^{5}=1+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5} \\
& \text { Pattern } \\
& \begin{array}{lll}
1 & 3 & 3
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array} \\
& 16 \quad 15 \quad 20 \quad 15 \quad 6 \quad 1
\end{aligned}
$$

Def: The binomial coefficients are

$$
\begin{aligned}
& \text { cf: The binomial coefficients } \\
& \binom{m}{0}:=1, \quad\binom{m}{1}:=m, \quad\binom{m}{2}:=\frac{\frac{m(m-1)}{2!}}{2!},
\end{aligned}
$$

k factors

$$
\binom{m}{k}=\frac{\overbrace{m(m-1)(m-2) \ldots(m-k+1)}^{k \text { factors }}}{k!} \text { for } k \geqslant 3
$$

Read " m choose k " because this is the number of ways to choose k objects out of m if m is a positive number. Ex: I have four students Caroline, John, Lindsey, Matthew. If I want to randomly choose two of them to present, there are $\binom{4}{2}=\frac{4(3)}{2!}=6$ is $4-2+1$ possibilities:

$$
\begin{aligned}
& C J, J L, L M \\
& C L, J M, \\
& C M
\end{aligned}
$$

The binomial Series (Theorem)
The Taylor series for $(1+x)^{m}$ is $\sum_{k=0}^{\infty}\binom{m}{k} x^{k}$

$$
(1+x)^{m}=\sum_{k=0}^{\infty}\binom{m}{k} x^{k} \quad \text { for } \quad-1<x<1
$$

Ex: If $m=3$,

$$
\begin{aligned}
& \text { Ex: If } m=3, \\
& \binom{3}{0}=1, \quad\binom{3}{1}=m=3,\binom{3}{2}=\frac{3(2)^{m-k+1}=3-2+1}{2!}=3, \quad\binom{3}{3}=\frac{3(2)(1)^{5-3+1}}{3!}=1,
\end{aligned}
$$

$\binom{3}{4}=0, \quad\binom{3}{5}=0, \quad\binom{3}{k}=0$ if $k>3$.
In general, if m is a positive integer, $\binom{m}{k}=0$ if $k>m$.
So $(1+x)^{3}=\binom{3}{0} x^{0}+\binom{3}{1} x+\binom{3}{2} x^{2}+\binom{3}{3} x^{3}$

$$
=1+3 x+3 x^{2}+x^{3}
$$

The Taylor series is finite (a polynomial)

Ex: if $m=-1$,

$$
\begin{gathered}
\binom{-1}{0}=1, \quad\binom{-1}{1}=m=-1, \quad\binom{-1}{2}=\frac{-1(-2)}{2!}=1, \\
\binom{-1}{3}=\frac{-1(-2)(-3)}{3!}=(-1) \quad \frac{3!}{3!}=-1
\end{gathered}
$$

In general, $\binom{-1}{k}=\frac{\overbrace{(-1)(-2)(-3) \ldots(-1-k+1)}^{k \text { products }}}{k!}=(-1)^{k} \frac{k!}{k!}=(-1)^{k}$
So $(1+x)^{-1}=\sum_{k=1}^{\infty}\binom{-1}{k} x^{k}=\sum_{k=1}^{\infty}(-1)^{k} x^{k}$ an infinite power series

Ex: Write the first four nonzero terms
of the Taylor series for the function $(1+3 x)^{\frac{1}{2}}$
Sol: $m=\frac{1}{2}$ two factors because $k=2$

$$
\begin{gathered}
\text { Sol: } \quad m=\frac{1}{2} \quad\binom{m}{0}=1, \quad\binom{m}{1}=m=\frac{1}{2}, \quad\binom{m}{2}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!}=\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2!}=-\frac{1}{2^{3}}, \\
\binom{m}{3}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}=\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}=\frac{3}{2^{3}(3) 2}=\frac{1}{2^{4}}
\end{gathered}
$$

$$
\begin{aligned}
(1+3 x)^{\frac{1}{2}} & =\sum_{k=0}^{\infty}\binom{m}{k}(3 x)^{k} \quad \text { for } \\
& =1(3 x)^{0}+\frac{1}{2}(3 x)^{1}-\frac{1}{2^{3}}(3 x)^{2}+\frac{1}{2^{4}}(3 x)^{3}+\ldots \\
& =1+\frac{3}{2} x-\frac{9}{8} x^{2}+\frac{27}{16} x^{3}+\ldots
\end{aligned}
$$

$$
\text { for }|3 x|<1
$$

first four nonzero terms ${ }^{9}$

Ex: Write the first four nonzero terms
of the Taylor series for the function $\left(1+x^{3}\right)^{-\frac{1}{3}}$

$$
\begin{aligned}
& \text { Sol: } m=-\frac{1}{3} \\
& \binom{m}{0}=1, \quad\binom{m}{1}=m=-\frac{1}{3},\binom{m}{2}=\frac{2 \text { factors }}{\frac{-\frac{1}{3}\left(-\frac{1}{3}-1\right)}{2!}=\frac{-\frac{1}{3}\left(-\frac{4}{3}\right)}{2}=\frac{4}{9} \frac{1}{2}=\frac{2}{9},} \\
& \binom{m}{3}=\frac{-\frac{1}{3}\left(-\frac{1}{3}-1\right)\left(-\frac{1}{3}-2\right)}{3!}=\frac{-\frac{1}{3}\left(-\frac{4}{3}\right)\left(-\frac{7}{3}\right)}{3(2)}=-\frac{4(7)}{3^{3}} \frac{1}{3(22}=-\frac{14}{81}
\end{aligned}
$$

So $\begin{aligned}\left(1+x^{3}\right)^{-\frac{1}{3}}=\sum_{k=0}^{\infty}\binom{-\frac{1}{3}}{k}\left(x^{3}\right)^{k} & =1-\frac{1}{3}\left(x^{3}\right)+\frac{2}{9}\left(x^{3}\right)^{2}-\frac{14}{81}\left(x^{3}\right)^{3}+\cdots \\ & =1-\frac{x^{3}}{3}+\frac{x^{6}}{9} x^{9}\end{aligned}$ $=1-\frac{x^{3}}{3}+\frac{2}{9} x^{6}-\frac{14}{81} x^{9} \pm$ first four nonzero $\begin{gathered}\text { terms }\end{gathered}$ terms

TABLE 9.1 Frequently Used Taylor Series

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots=\sum_{n=0}^{\infty} x^{n}, \quad|x|<1 \\
& \frac{1}{1+x}=1-x+x^{2}-\cdots+(-x)^{n}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{n}, \quad|x|<1 \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad|x|<\infty \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}, \quad|x|<\infty \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}, \quad|x|<\infty \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}, \quad-1<x \leq 1 \\
& \tan { }^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}, \quad|x| \leq 1
\end{aligned}
$$

Evaluating nonelementary integrals (review of sec 9.7)
Ex:
Integrals like $\int \sin \left(x^{2}\right) d x$ arise in the study of the diffraction of light. It cannot be expressed as an elementary function, but it can be expressed as a power series.

$$
\begin{aligned}
& \sin \left(x^{2}\right)=\left(x^{2}\right)-\frac{\left(x^{2}\right)^{3}}{3!}+\frac{\left(x^{2}\right)^{5}}{5!}-\frac{\left(x^{2}\right)^{7}}{7!}+\ldots=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{(2 n+1)!} \\
& \int \sin \left(x^{2}\right) d x=C+\frac{x^{3}}{3}-\frac{x^{7}}{7 \cdot 3!}+\frac{x^{11}}{11 \cdot 5!}-\frac{x^{15}}{15 \cdot 7!}=C+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+3}}{(4 n+3) \cdot(2 n+1)!} \\
& n=0 \quad n=1 \quad n=2 \quad n=3
\end{aligned}
$$

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad|x|<\infty \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}, \quad|x|<\infty \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}, \quad|x|<\infty
\end{aligned}
$$

1)

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
e^{i \theta} & =1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\ldots \\
& =1+i \theta+\frac{i^{2} \theta^{2}}{2!}+\frac{i^{3} \theta^{3}}{3!}+\frac{i^{4} \theta^{4}}{4!}+\frac{i^{5} \theta^{5}}{5!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-\frac{i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\frac{i \theta^{5}}{5!}+\ldots
\end{aligned}
$$

2)

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& \cos \theta=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\frac{\theta^{8}}{8!}-\ldots
\end{aligned}
$$

3)

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

$$
\begin{aligned}
i \sin \theta & =i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\cdots\right) \\
& =i \theta-\frac{i \theta^{3}}{3!}+\frac{i \theta^{5}}{5!}-\frac{i \theta^{7}}{7!}+\cdots
\end{aligned}
$$

$$
\cos \theta+i \sin \theta=1+i \theta-\frac{\theta^{2}}{2!}-\frac{i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\frac{i \theta^{5}}{5!}-\frac{\theta^{6}}{6!}-\frac{i \theta^{7}}{7!}+\frac{\theta^{8}}{8!}-\ldots=e^{i \theta}
$$

For any real number θ,

$$
e^{i \theta}=\cos \theta+i \sin \theta \quad \text { (called "Euler's identity") }
$$

So, for any complex number $a+i b$, we have

$$
e^{a+i b}=e^{a}\left(e^{i b}\right)=e^{a}(\cos b+i \sin b)=e^{a} \cos b+e^{a} i \sin b
$$

For example, $e^{i \pi}=\cos \pi+i \sin \pi=-1+i 0$
So $\quad e^{i \pi}=-1$

Remark:
This explanation $e^{i \theta}=\cos \theta+i \sin \theta$
relates power series (last part of Ch 9) with polar coordinates (Ch 10)!

