Sec 9.1 Sequences

A sequence is an ordered collection of objects

Examples

* A sequence of letters

In Sec 9.1, a <u>sequence</u> is a list of numbers indexed by the natural numbers 1,2,3,4,...

Notation: $\{a_1, a_2, a_3, \ldots, a_n, \ldots\}$ or $\{a_n\}_{n=1}^{\infty}$ The index doesn't have to start at 1, \underline{ex} $\{a_n\}_{n=0}^{\infty}$ or $\{a_n\}_{n=0}^{\infty}$

Examples of sequences

1,3,5,7,9,... is the sequence of odd natural numbers formula $a_n = 2n-1$ for n=1,2,3,...

*
$$\{a_n\}_{n=1}^{\infty}$$
 where $a_n = 2n^2 - 3n + 1$.

Write the first three terms of $\{a_n\}_{n=1}^{\infty}$

$$a_1 = 2(1)^2 - 3(1) + 1 = 0$$

$$A_2 = 2(4) - 3(2) + 1 = 3$$

 $A_3 = 2(9) - 3(3) + 1 = 10$

* Find a formula for the general term an for the sequence
$$\{1, -3, 5, -7, 9, \dots\}$$
:

If Starting index is
$$n=1$$
: $a_n = (2n-1)(-1)^{n+1}$ for $n=(1,2,3,...$ or $a_n = -(2n-1)(-1)^n$

* Find a formula for the general term an of the sequence
$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3125}, \ldots\right\}$$
:

· If Starting Index is n=1:
$$a_1$$
 a_2 a_3 a_4 a_5

The signs alternate positive & negative, so we need to multiply by
$$(-1)^{(something)}$$
. At is positive, so multiply by $(-1)^{n+1}$ or $(-1)^{n-1}$.

. Denominators are 5, 25, 125, 625, 3125:
$$5^n$$
 in general 5^1 , 5^2 , 5^3 , 5^4 , 5^5 , 6^2 , 6^3

•
$$a_n = (-1)^{n+1} \frac{n+2}{5^n}$$
 for $n=1,2,3,...$

. If starting index is N=0:
$$a_n = (-1)^n \frac{n+3}{5^{n+1}}$$
 or $\frac{(-1)^n}{5^n} \frac{n+3}{5^n}$

* The Fibonacci sequence is defined recursively by

 $a_{1}=1$, $a_{2}=1$, $a_{n+2}=a_{n}+a_{n+1}$ for n=1,2,3,...

each term is the sum of the previous two terms

First few terms of the Fibonacci sequence:

* The sequence $a_n = \frac{n}{n+1}$ for n=1, 2, 3, ...

Table:
$$\frac{n}{4n} \frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5} \dots \frac{n}{n+1}$$

Graph:
$$\frac{2}{3}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{3}$$

$$\frac{1}{4}$$

$$\frac{1}{2}$$

$$\frac{1}{3}$$

(The terms of
$$a_n = \frac{n}{n+1}$$
 Seem to approach 1 as n gets large.)

The difference
$$1 - a_n = 1 - \frac{n}{n+1}$$

$$= \frac{n+1-n}{n+1}$$

Can be made as small as we like by taking large enough n.

The notation for this is
$$\lim_{n\to\infty} \frac{n}{n+1} = 1$$
.

In general, writing lim an = L means:

the terms of the sequence [an] approach Las n becomes large.

New vocab (memorize)

** A sequence
$$\{a_n\}$$
 has limit \bot &

we write $\{a_n\}$ has limit \bot &

if we can make the terms $\{a_n\}$ as close to \bot as

we like by taking $\{a_n\}$ sufficiently large.

** If $\{a_n\}$ diverges (or is divergent)

is a number)

** Otherwise, Say $\{a_n\}$ diverges (or is divergent or is not convergent).

EX Is the sequence $\{a_n\}$ diverges (or is divergent or divergent?

$$\{a_n\}$$

New Vocab Writing $\lim_{n\to\infty} a_n = \infty$ means:

for every positive number M, no matter how big

there is an integer N such that if n > N then $a_n > M$. Say $\{a_n\}$ diverges to ∞ .

lim an=-∞ means: n→∞ for every positive number M, there is an integer N such that if n>N then an <-M.

Say {an} diverges to -∞

Ex Is $a_n = \frac{-n}{\sqrt{10+n}}$ convergent? $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{-n}{\sqrt{lo+n}} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}$

$$= \lim_{n \to \infty} \frac{-1}{\sqrt{\frac{10}{n^2} + \frac{n}{n^2}}}$$

$$\lim_{n \to \infty} -1$$

$$= \lim_{n \to \infty} \frac{-1}{\sqrt{\frac{10}{n^2} + \frac{1}{n}}} \qquad \text{as } n \to \infty$$

$$= -\infty$$

$$= -\infty$$

lim an does not exist, so [an] diverges (is not convergent).

* lim an=-∞ means {an} diverges in a special way: Say [an] diverges to -0

Thm Let f be any function.

If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when n is an integer,

then $\lim_{n\to\infty} a_n = L$ (upshot: We can replace x with n)

Ex (Application of Thm) Calculate $\lim_{n\to\infty} \frac{\ln n}{n}$: Let $f(x) = \frac{\ln x}{n}$

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\left(\frac{1}{x}\right)(x)}{1}$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\left(\frac{1}{x}\right)(x)}{1}$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\left(\frac{1}{x}\right)(x)}{1}$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\left(\frac{1}{x}\right)(x)}{1}$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\left(\frac{1}{x}\right)(x)}{1}$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\ln x}{1}$ $\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\ln x}{1}$ $\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\ln x}{1}$ $\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\ln x}{1}$

Since $f(n) = a_n$ for n = 1, 2, 3, ..., we can apply above thm:

 $\lim_{n\to\infty} a_n = \lim_{x\to\infty} f(x) = 0.$ $\lim_{n\to\infty} f(x) = 0.$ $\lim_{n\to\infty} f(x) = 0.$

Thm (Limit laws for convergent sequences)

If [an] and [bn] are convergent sequences and c is a number,

then * lim (an + bn) = lim an + lim bn $n \to \infty$ $n \to \infty$

 $\begin{array}{cccc}
 & \lim_{n \to \infty} (a_n) &= \lim_{n \to \infty} a_n \\
 & \lim_{n \to \infty} (a_n b_n) &= \lim_{n \to \infty} (\lim_{n \to \infty} a_n) &= \lim_{n \to \infty} (\lim_{n \to \infty} b_n) \\
 & \lim_{n \to \infty} (a_n b_n) &= \lim_{n \to \infty} (\lim_{n \to \infty} a_n) &= \lim_{$

Sandwich Thm (or Squeeze Thm)

If
$$\#$$
 an \leq bn \leq Cn for $n \geq N$, AND

 $\#$ lim an = $\lim_{n \to \infty}$ Cn = L

THEN Im bn = L

(If bn is bounded above & below by two sequences converging to L, then bn converges to L.)

Thm (special case of squeeze Thm)

EX (of Thm)

Is $b_n = \frac{C_1}{n}$ convergent?

 $\lim_{n \to \infty} |b_n| = \lim_{n \to \infty} |\frac{c_1}{n}|$
 $\lim_{n \to \infty} |b_n| = \lim_{n \to \infty} |\frac{c_1}{n}|$
 $\lim_{n \to \infty} |b_n| = \lim_{n \to \infty} |\frac{c_1}{n}|$
 $\lim_{n \to \infty} |b_n| = \lim_{n \to \infty} |\frac{c_1}{n}|$
 $\lim_{n \to \infty} |b_n| = \lim_{n \to \infty} |\frac{c_1}{n}|$

By Squeeze Thm, lim bn = 0. So lim bn exists.

So {bn} is convergent.

Thm If
$$\lim_{n\to\infty} a_n = L$$
 and function f is continuous at L,
then $\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n) = f(L)$

upshot: can bring lim inside brackets if
f is continuous at L.

$$\lim_{n\to\infty} \sin\left(\frac{\pi}{n}\right) = ?$$

Let
$$a_n := \frac{\pi}{n}$$
. Then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\pi}{n} = 0$.

Let fa) = sinx. Then f(x) is continuous at 0.

So
$$\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n) = f(0)$$

by Thm

$$\lim_{n\to\infty} \sin\left(\frac{\pi}{n}\right) = \sin\left(\lim_{n\to\infty} \frac{\pi}{n}\right) = \sin\left(0\right) = 0.$$
by Thm

New Vocab $a_n = \gamma^n$ (like $a_n = \left(\frac{1}{2}\right)^n$, $a_n = \left(-1\right)^n$, $a_n = 1^n$, $a_n = \left(-1\right)^n$) is called a geometric sequence $\lim_{n\to\infty} \left(\frac{1}{2}\right)^n = 0$, say $\left\{\frac{1}{2^n}\right\}$ converges to 0 $\lim_{n \to \infty} 1^n = 1$, say $\{1\}$ converges to 1 * not a number $\lim_{n \to \infty} 2^n = \infty^n$, say $\{2^n\}$ diverges to ∞ * $\lim_{n\to\infty} \left(-\frac{2}{3}\right)^n = 0$ by Sandwich (or squeeze) Thm. £ Say $\left\{\left(\frac{2}{3}\right)^n\right\}$ converges to 0. lim (1)" doesn't exist. Say ((-1)") diverges. Ж $\lim_{n\to\infty} \left(-\frac{3}{2}\right)^n$ doesn't exist. Say $\left\{\left(-\frac{3}{2}\right)^n\right\}$ diverges. * The geometric sequence [r"] Tact (like $r: 1, \frac{1}{2}, -\frac{2}{3}$) is convergent if -1 <r ≤1: lim r = 0 if -1 < r < 1 lim 1 = 1 $\{r^n\}$ diverges if $r \leqslant -1$ or $1 \leqslant r \in (like r = -1, -\frac{3}{2}, 2)$ * $\{a_n\}$ is increasing if $a_n < a_{n+1}$ for all n > 1: $a_1 < a_2 < a_3 < \dots$ * $\{a_n\}$ is decreasing if $a_n > a_{n+1}$ for all n > 1: $a_1 > a_2 > a_3 > \dots$ * $\{a_n\}$ is monotonic if it is either increasing or decreasing.

Ex ls $\frac{3}{n+5}$ monotonic? $a_1 = \frac{3}{6} > a_2 = \frac{3}{7} > a_3 = \frac{3}{8} > \dots$ $a_n = \frac{3}{n+5} > a_{n+1} = \frac{3}{n+6}$ for all $n = (1, 2, \dots$ So $\{a_n\}$ is decreasing, so $\{a_n\}$ is monotonic.

New vocab

New vocab

* [an] is bounded above if there is a number M such that $a_n \le M$ for all n > 1.

* [an] is bounded below if there is a number m such that $m \le a_n$ for all n > 1.

Ex $\frac{3}{n+5}$ lower bounds: upper bounds: $\frac{3}{6}$, 1, 1000

* Say Ean? is bounded if

Monotonic Sequence Thm If [an] is bounded and monotonic, then [an] converges. $\frac{E \times}{E}$ { $\frac{3}{n+5}$ } is decreasing and bounded, so by the monotonic sequence thm, {3/n+5} converges. True or false? 1. If a sequence {an} is bounded, then {an} is convergent. False. Counter example: {1,-1,1,-1,...} is bounded by -1 and 1 but it diverges. 2. If [an] is monotonic, then [an] is convergent. False. Counter example: Let an=n. Then {an} is increasing but lim an = 00 so [an] is divergent.

3. If [an] is convergent, then [an] is monotonic. False. Counterexample: $a_n = \frac{(-1)^n}{n}$ is convergent but not monotonic (neither increasing nor decreasing).