Sec 8.6 Numerical Integration

Def: Elementary functions

An elementary function is a function which can be obtained from
power functions (like
$$x^{\frac{1}{5}}$$
),
exponential functions (like e^{x}),
logarithmic functions (like dn),
trig functions (like $sec(x)$),
inverse trig functions (like $arcsec(x)$)
by addition/subtraction/multiplication/division/composition
Example
 $f(x) = \sqrt{x^3 + 1} + \frac{1}{\sqrt{1 + x}} - e^{(x^2)}$

 $\int e^{x^2} dx \qquad \int \frac{e^x}{x} dx \qquad \int \sin(x^2) dx \qquad \int \cos(e^x) dx \qquad \int \ln(\ln x) dx$ $\int e^{(e^x)} dx \qquad \int \sqrt{x^3 + 1} dx \qquad \int \frac{1}{\ln x} dx \qquad \int \frac{\sin x}{x} dx$

We'll be able to express them in Sec 9.10

$$\frac{\text{Trapezoid Rule}}{\text{Idea: Instead of rectangles, approximate using trapezoids.}}$$

$$\text{Area of a trapezoid} \quad \begin{array}{c} Y_{i-1} \\ X_i \\ X_i \end{array} \quad \begin{array}{c} Y_{i-1} \\ Y_i \end{array}$$

Ex 1:
a) Use the Trapezoidal Rule with n= 4 steps to estimate
$$\int_{1}^{2} x^{2} dx$$
.
b) Compare the estimate with the exact value.

Sol: a) Partition the interval
$$[1,2]$$
 into 4 subintervals:

$$\Delta x = \frac{2-1}{4} = \frac{1}{4}$$

$$\begin{bmatrix} + + + + - \\ 1 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1$$

 $\begin{array}{rcl} & \text{Approximation} & \text{is} & T &=& \frac{\Delta x}{2} \left(Y_0 + Y_1 \right) + \frac{\Delta x}{2} \left(Y_1 + Y_2 \right) + \frac{\Delta x}{2} \left(Y_2 + Y_3 \right) + \frac{\Delta x}{2} \left(Y_3 + Y_4 \right) \\ & =& \frac{\left(\frac{1}{4}\right)}{2} \left(Y_0 + 2Y_1 + 2Y_2 + 2Y_2 + 2Y_3 + Y_4 \right) \\ & =& \frac{1}{8} \left(1^2 + 2\left(\frac{5}{4}\right)^2 + 2\left(\frac{4}{4}\right)^2 + 2\left(\frac{7}{4}\right)^2 + 2^2 \right) \\ & =& \left[\frac{71}{32}\right] = 2 \cdot 34375 \\ & =& \left[\frac{71}{32}\right] = 2 \cdot 34375 \\ & \text{b} \right) \text{ Exact value} \quad \text{is} \quad \int_{1}^{2} x^2 \, dx = \frac{x^3}{3} \Big|_{1}^{2} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} \\ & \text{Error}: 2 \cdot 34375 - \frac{7}{3} \approx 0.0104 \ , \ \text{Percentage} \quad \text{error}: \left(2 \cdot 34375 - \frac{7}{3}\right) \left/ \left(\frac{7}{3}\right) \cdot 100\% \approx 0.446\% \end{array}$

Thm: Let M be any upper bound for the values of |f'| on $[a_1b_2]$. Then the error E_T in the trapezoidal approximation of $\int_a^b f(x) dx$ using n steps satisfies $|E_T| \leq \frac{M (b-a)^3}{l^2 n^2}$

Ex 1: c) Find an upper bound for $|E_T|$ for the Trapezoidal rule approximation of $\int_{1}^{2} x^2 dx$ with n= 4 steps.

$$S_{0}|: f(x) = x^{2}$$

$$f'(x) = 2x$$

$$f''(x) = 2$$

$$S_{0} M = 2$$

$$\left[E_{T}\right] \leq \frac{2(2-1)^{2}}{12(4)^{2}} = \frac{1}{6} \frac{1}{16} \approx 0.0104$$

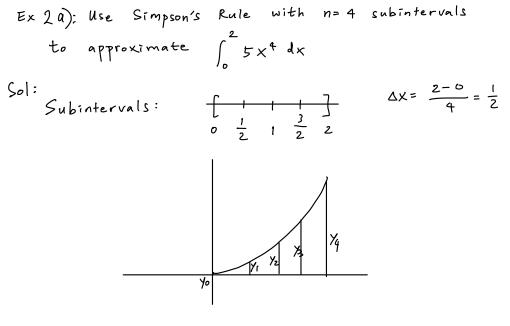
Simpson's Rule Approximate using parabolas (instead of straight-lines). $Y = Ax^2 + Bx + C$ Area of $\frac{y}{2}$ is $A = \int_{-h}^{h} (Ax^2 + Bx + C) dx = A\frac{x^3}{3} + B\frac{x^2}{2} + Cx \Big|_{-h}^{h}$ $= A \frac{h^3}{2} + B \frac{h^2}{2} + Ch$ $=\frac{2Ah^{3}+2Ch}{3}$ $= \frac{h}{3} \left(2Ah^2 + 6C \right)$ We know K = A (-h)2 + B (-h) + C = Ah2 - Bh + C $Y_{1} = A(o)^{2} + B(o) + C = C$ $Y_2 = A(h)^2 + Bh + C$ So $Y_0 + 4Y_1 + Y_2 = Ah^2 - Bh + C$

$$t 4C$$

 $Ah^{2} + Bh + C$
 $= 2Ah^{2} + 6C$

$$\zeta_{o}$$
 Area $A = \frac{h}{3} \left(2Ah^{2} + 6c \right) = \frac{h}{3} \left(Y_{o} + 4Y_{i} + Y_{2} \right)$

Note: For Simpson's rule we need an even number of subintervals because each shape requires two subintervals. <u>x.</u>, <u>x</u>



Approximation using Simpson's Rule is

2

$$S = \frac{A \times}{3} \left[Y_0 + 4 Y_1 + Y_2 \right] + \frac{A \times}{3} \left[Y_2 + 4 Y_3 + Y_4 \right]$$

$$= \frac{\left(\frac{1}{2}\right)}{3} \left[Y_0 + 4 Y_1 + 2 Y_2 + 4 Y_3 + Y_4 \right]$$

$$= \frac{1}{6} \left[5(0)^4 + 4 \cdot 5(\frac{1}{2})^4 + 2 \cdot 5(1)^4 + 4 \cdot 5(\frac{3}{2})^4 + 5(2)^4 \right]$$

$$= \frac{1}{6} \left[4 \frac{5}{16} + 2(5) + 4(\frac{405}{16}) + 80 \right]$$

$$= 32 \frac{1}{12}$$

Compare with exact value.

2b): Compare with exact value.
Sol:
$$\int_{0}^{2} 5x^{4} dx = 5 \frac{x^{5}}{5} \Big|_{0}^{2} = 2^{5} = 32$$
.
Error : $\frac{1}{12}$. Percentage error : $(\frac{1}{12})/32 \times 100\% \approx 0.0026 \times 100\%$
 $= 0.26\%$
very small
w/ only n=4 subintervals

$$\frac{Thm:}{Let M be any upper bound for the values of} \left[f^{(4)} \right] on [a, b].$$

$$f$$

$$4th derivative of f$$

$$Then the error Es in the Simpson's Rule approximation of $\int_{a}^{b} f(x) dx$ for a steps Satisfies
$$\left| Es \right| \leq \frac{M(b-a)^{5}}{180 n^{4}}$$

$$(much smaller than the upper bound using Trapezoida(Rule)$$$$

Ex 2 c):

Find an upper bound for the error in estimating

$$\int_{0}^{2} 5 \times^{4} dx \text{ using Simpson's Rule with } n=4 \text{ subintervals.}$$
Sol: $f(x) = 5 \times^{4}$ $|E_{5}| \leq \frac{120(2-0)^{5}}{180\cdot 4^{2}} = \frac{1}{12}$
 $f^{1}(x) = 20 \times^{3}$
 $f''(x) = 60 \times^{2}$
 $f^{(3)}(x) = 120 \times$
 $M = 120$

Ex 2d): Estimate the minimum number of subintervals
needed to approximate
$$\int_{0}^{2} 5 \times 4 \, dx$$

using Simpson's Rule with an error of
magnitude less than 10^{-4} .
Sol: By the thm, if
 $\frac{M(L-a)^{5}}{180 n^{4}} < 10^{-4}$
then the error Es satisfies $|Es| < 10^{-4}$, as required.
M = 120 from before, $b-a=2$.
We want n to satisfy
 $\frac{2}{3} \frac{12a(2)^{5}}{3} < 10^{-4}$
Solve this inequality for n:
 $\frac{2^{4}}{5} 10^{4} < n^{4}$
 $2 1.3 \approx \left(\frac{64}{5}\right)^{10} < n$
Since n must be even in Simpson's Rule, we estimate
the minimum number of subintervals repured to be $[n:22]$.