Sec 8.6 Numerical Integration
Def: Elementary functions
An elementary function is a function which can be obtained from power functions (like $x^{\frac{1}{5}}$ ),
exponential functions (like $e^{x}$ ),
logarithmic functions (like $\ell n$ ),
trig functions (like $\sec (x)$ ),
inverse trig functions (like $\operatorname{arcsec}(x)$ )
by addition/subtraction/multiplication/division/Composition
Example

$$
f(x)=\sqrt{x^{3}+1}+\frac{1}{\ln x}-e^{\left(x^{2}\right)}
$$

- If $f$ is an elementary function, then $f^{\prime}$ is also an elementary function but $\int f(x) d x$ may not be an elementary function.
- In fact, the majority of elementary functions do not have elementary antiderivatives
(and we cannot compute them using u-substitution or Sec 8.1-8.4 methods) These integrals cannot be expressed as elementary functions:

$$
\begin{aligned}
& \int e^{x^{2}} d x \quad \int \frac{e^{x}}{x} d x \quad \int \sin \left(x^{2}\right) d x \quad \int \cos \left(e^{x}\right) d x \quad \int \ln (\ln x) d x \\
& \int \mathrm{e}^{\left(\mathrm{e}^{\mathrm{x}}\right)} \mathrm{dx} \int \sqrt{x^{3}+1} d x \quad \int \frac{1}{\ln x} d x \quad \int \frac{\sin x}{x} d x
\end{aligned}
$$

We'll be able to express them in Sec 9.10

Trapezoid Rule for definite integrals
Idea: Instead of rectangles, approximate using trapezoids.


Area of a trapezoid

Ex $1:$
a) Use the Trapezoidal Rule with $n=4$ steps to estimate $\int_{1}^{2} x^{2} d x$.
b) Compare the estimate with the exact value.

Sol: a) Partition the interval $[1,2]$ into 4 subintervals:

$$
\left.\Delta x=\frac{2-1}{4}=\frac{1}{4} \quad \begin{array}{rlll}
-1 & 1 \frac{1}{4} & 1 \frac{1}{2} & 1 \frac{3}{4}
\end{array}\right] 2
$$



Approximation is $T=\frac{\Delta x}{2}\left(Y_{0}+Y_{1}\right)+\frac{\Delta x}{2}\left(Y_{1}+Y_{2}\right)+\frac{\Delta x}{2}\left(Y_{2}+Y_{3}\right)+\frac{\Delta x}{2}\left(Y_{3}+Y_{4}\right)$

$$
\begin{aligned}
& =\frac{\left(\frac{1}{4}\right)}{2}\left(Y_{0}+2 Y_{1}+2 Y_{2}+2 Y_{3}+Y_{4}\right) \\
& =\frac{1}{8}\left(1^{2}+2\left(\frac{5}{4}\right)^{2}+2\left(\frac{6}{4}\right)^{2}+2\left(\frac{7}{4}\right)^{2}+2^{2}\right) \\
& =\frac{75}{32}=2.34375
\end{aligned}
$$

b) Exact value is $\int_{1}^{2} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{1} ^{2}=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$

Error: $2.34375-\frac{7}{3} \approx 0.0104$. Percentage error: $(2.34375-7 / 3) /\left(\frac{7}{3}\right) \cdot 100 \% \approx 0.446 \%$.

Thy: Let $M$ be any upper bound for the values of $\left|f^{\prime \prime}\right|$ on $[a, b]$. Then the error $E_{T}$ in the trapezoidal approximation of $\int_{a}^{b} f(x) d x$ using $n$ steps satisfies

$$
\left|E_{T}\right| \leqslant \frac{M(b-a)^{3}}{12 n^{2}}
$$

Ex 1: c) Find an upper bound for $\left|E_{T}\right|$ for the Trapezoidal rule approximation of $\int_{1}^{2} x^{2} d x$ with $n=4$ steps.
Sol: $\quad f(x)=x^{2}$
$f^{\prime}(x)=2 x$
$f^{\prime \prime}(x)=2$
an upper bound
So $M=2$ for $\left|E_{T}\right|$

$$
\left|E_{T}\right| \leqslant \frac{2(2-1)^{2}}{12(4)^{2}}=\frac{1}{6} \frac{1}{16} \approx 0.0104
$$

Simpson's Rule
Approximate using parabolas (instead of straight-lines).

Area of


$$
\text { is } \begin{aligned}
A=\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x & =\frac{A x^{3}}{3}+\frac{B x^{2}}{2}+\left.C x\right|_{-h} ^{h} \\
= & A \frac{h^{3}}{3}+B \frac{h^{2}}{2}+C h \\
& -\frac{A(-h)^{3}}{3}-B \frac{(-h)^{2}}{2}-C(-h)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 A}{3} h^{3}+2 C h \\
& =\frac{h}{3}\left(2 A h^{2}+6 C\right)
\end{aligned}
$$

We know $Y_{0}=A(-h)^{2}+B(-h)+C=A h^{2}-B h+C$

$$
\begin{aligned}
& Y_{1}=A(0)^{2}+B(0)+C=C \\
& Y_{2}=A(h)^{2}+B h+C
\end{aligned}
$$

So

$$
\begin{aligned}
Y_{0}+4 Y_{1}+Y_{2}= & A h^{2}-B h+C \\
& +4 C \\
& A h^{2}+B h+C \\
= & 2 A h^{2}+6 C
\end{aligned}
$$

So area $A=\frac{h}{3}\left(2 A h^{2}+6 c\right)=\frac{h}{3}\left(Y_{0}+4 Y_{1}+Y_{2}\right)$.

Note: For Simpson's rule we need an even number of subintervals because each shape requires two subintervals.


Ex 2 a): Use Simpson's Rule with $n=4$ subintervals to approximate $\int_{0}^{2} 5 x^{4} d x$

Sol:
Subintervals:



Approximation using Simpson's Rule is

$$
\begin{aligned}
S & =\frac{\Delta x}{3}\left[Y_{0}+4 Y_{1}+Y_{2}\right]+\frac{\Delta x}{3}\left[Y_{2}+4 Y_{3}+Y_{4}\right] \\
& =\frac{\left(\frac{1}{2}\right)}{3}\left[Y_{0}+4 Y_{1}+2 Y_{2}+4 Y_{3}+Y_{4}\right] \\
& =\frac{1}{6}[\overbrace{5(0)^{4}}^{Y_{0}}+4 \cdot \overbrace{5\left(\frac{1}{2}\right)^{4}}^{Y_{1}}+2 \cdot \overbrace{5(1)^{4}}^{Y_{2}}+4 \cdot \overbrace{5\left(\frac{3}{2}\right)^{4}}^{Y_{3}}+\overbrace{5(2)^{4}}^{Y_{4}}] \\
& =\frac{1}{6} \quad\left[4 \frac{5}{16}+2(5)+4\left(\frac{405}{16}\right)+80\right] \\
& =32 \frac{1}{12}
\end{aligned}
$$

2b): Compare with exact value.
Sol: $\int_{0}^{2} 5 x^{4} d x=\left.5 \frac{x^{5}}{5}\right|_{0} ^{2}=2^{5}=32$.
Error: $\frac{1}{12}$. Percentage error: $\left(\frac{1}{12}\right) / 32 \times 100 \% \approx 0.0026 \times 100 \%$

$$
=0.26 \%
$$

very small $w /$ only $n=4$ subintervals.

Thu:
Let $M$ be any upper bound for the values of $\left|f^{(4)}\right|$ on $[a, b]$.

4 th derivative
of $f$
Then the error $E_{S}$ in the Simpson's Rule approximation of $\int_{a}^{b} f(x) d x$ for $n$ steps satisfies

$$
\left|E_{s}\right| \leq \frac{M(b-a)^{5}}{180 n^{4}}
$$

(much smaller than the upper bound using Trapezoidal Rule)

Ex 2 c):
Find an upper bound for the error in estimating $\int_{0}^{2} 5 x^{4} d x$ using simpson's Rule with $n=4$ subintervals.

Sol:

$$
\begin{aligned}
& f(x)=5 x^{4} \quad\left|E_{s}\right| \leq \frac{120(2-0)^{5}}{180 \cdot 4^{2}}=\frac{1}{12} \\
& f^{\prime}(x)=20 x^{3} \\
& f^{\prime \prime}(x)=60 x^{2} \\
& f^{(3)}(x)=120 x \\
& f^{(4)}(x)=120 \\
& M=120
\end{aligned}
$$

Ex 2d): Estimate the minimum number of subintervals needed to approximate $\int_{0}^{2} 5 x^{4} d x$
using Simpson's Rule with an error of magnitude less than $10^{-4}$.

Sol: By the the, if

$$
\frac{M(b-a)^{5}}{180 n^{4}}<10^{-4}
$$

then the error $E_{s}$ satisfies $\left|E_{s}\right|<10^{-4}$, as required.
$M=120$ from before, $\quad b-a=2$.

We want $n$ to satisfy

$$
\frac{2+2 a(2)^{5}}{3^{180} n^{4}}<10^{-4}
$$

Solve this inequality for $n$ :

$$
\begin{array}{r}
\frac{2^{6}}{3} 10^{4}<n^{4} \\
\frac{64}{3} 10^{4}<n^{4} \\
21.5 \approx\left(\frac{64}{3}\right)^{\frac{1}{4} 10}<n
\end{array}
$$

Since $n$ must be even in Simpson's Rule, we estimate the minimum number of subintervals required to be $n=22$.

