Sec 8.4 Integration of Rational Functions by Partial Fractions

Def A rational function is a ratio of polynomials

Example $\frac{9 x+3}{x^{2}-9}$ and $\frac{6 x^{3}+3 x^{2}-45 x-24}{x^{2}-9}$ are rational functions
Def A rational function $\frac{P(x)}{Q(x)}$ is proper if $\operatorname{deg}(P)<\operatorname{deg}(Q)$, otherwise it is improper.

Example $\frac{9 x+3}{x^{2}-9}$ is a proper rational function

$$
\begin{aligned}
& \operatorname{deg}(P)=1 \\
& \operatorname{deg}(Q)=2
\end{aligned}
$$

$\frac{6 x^{3}+3 x^{2}-45 x-24}{x^{2}-9}$ is an improper rational function

$$
\begin{aligned}
& \operatorname{deg}(P)=3 \\
& \operatorname{deg}(Q)=2
\end{aligned}
$$

Long division

- Goal: Integrate *any* proper rational function
- Any improper rational function $\frac{P(x)}{Q(x)}$ can be written as

$$
(\text { a polynomial } S(x))+\frac{R(x)}{Q(x)}
$$

can integrate using power rule a proper rational function
Example: $\frac{6 x^{3}+3 x^{2}-45 x-24}{x^{2}-9}$ is an improper rational function.

- Perform long division to write it as

$$
\begin{aligned}
& \text { To write it as } \\
& S(x)+\frac{R(x)}{Q(x)} \text { deg of } R(x) \\
& \text { a polynomial } \begin{array}{c}
\text { deg of } Q(x)
\end{array}
\end{aligned}
$$

$S(x)$ will go here
$\underbrace{x^{2}-9}_{Q(x)} \sqrt{\underbrace{6 x^{3}+3 x^{2}-45 x-24}}$
$R(x)$ will go here

Long division $\frac{P(x)}{Q(x)}=\frac{6 x^{3}+3 x^{2}-45 x-24}{x^{2}-9} \quad$ Goal: $\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}$
(1) $\frac{6 x^{3}}{x^{2}}=6 x$

$$
6 x
$$

$$
x ^ { 2 } - 9 \longdiv { 6 x ^ { 3 } + 3 x ^ { 2 } - 4 5 x - 2 4 } \begin{array} { l }
{ 6 x ^ { 3 } - 5 4 x }
\end{array}
$$

(2) $6 x\left(x^{2}-9\right)=6 x^{3}-54 x \rightarrow 6 x^{3}-54 x$

Long division $\frac{P(x)}{Q(x)}=\frac{6 x^{3}+3 x^{2}-45 x-24}{x^{2}-9} \quad$ Goal: $\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}$

$$
\text { (1) } \frac{6 x^{3}}{x^{2}}=6 x
$$

$$
\frac{6 x}{x ^ { 2 } - 9 \longdiv { 6 x ^ { 3 } + 3 x ^ { 2 } - 4 5 x - 2 4 }}
$$

(2) $6 x\left(x^{2}-9\right)=6 x^{3}-54 x \rightarrow 6 x^{3}-54 x$
(3) Subtract $\left.6 x^{3}+3 x^{2}-45 x-24\right] \rightarrow 3 x^{2}+9 x-24 \leftarrow$ deg is not smaller with $6 x^{3}-54 x$ than deg of $Q(x)=x^{2}-9$, so keep going

Long division $\frac{P(x)}{Q(x)}=\frac{6 x^{3}+3 x^{2}-45 x-24}{x^{2}-9} \quad$ Goal: $\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}$
(1) $\frac{6 x^{3}}{x^{2}}=6 x$
(1) $\frac{3 x^{2}}{x^{2}}=3$

$$
\frac{6 x+3}{x ^ { 2 } - 9 \longdiv { 6 x ^ { 3 } + 3 x ^ { 2 } - 4 5 x - 2 4 }}
$$

(2) $6 x\left(x^{2}-9\right)=6 x^{3}-54 x \rightarrow 6 x^{3}-54 x$
(3) Subtract $\left.6 x^{3}+3 x^{2}-45 x-24\right] \rightarrow 3 x^{2}+9 x-24 \leftarrow$ deg is not smaller than deg of
(2) $3\left(x^{2}-9\right)=3 x^{2}-27 \rightarrow 3 x^{2} \longrightarrow-27$ $Q(x)=x^{2}-9$, so keep going

Long division $\frac{P(x)}{Q(x)}=\frac{6 x^{3}+3 x^{2}-45 x-24}{x^{2}-9} \quad$ Goal: $\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}$
(1) $\frac{6 x^{3}}{x^{2}}=6 x$
(1) $\frac{3 x^{2}}{x^{2}}=3$

$$
\frac{6 x+3}{x ^ { 2 } - 9 \longdiv { 6 x ^ { 3 } + 3 x ^ { 2 } - 4 5 x - 2 4 }}
$$

(2) $6 x\left(x^{2}-9\right)=6 x^{3}-54 x \rightarrow 6 x^{3}-54 x$
(3) Subtract $\left.6 x^{3}+3 x^{2}-45 x-24\right] \rightarrow 3 x^{2}+9 x-24 \leftarrow$ deg is not smaller with $6 x^{3}-54 x$ than deg of
(2) $3\left(x^{2}-9\right)=3 x^{2}-27 \longrightarrow 3 x^{2}-27 \quad Q(x)=x^{2}-9$,
(3) Subtract $\left.\begin{array}{lr}3 x^{2}+9 x-24 \\ \text { with } \\ 3 x^{2} & -27\end{array}\right] \rightarrow 9 x+3$ so keep going
deg is smaller than the denominator $Q(x)$. Were done.

Long division $\frac{P(x)}{Q(x)}=\frac{6 x^{3}+3 x^{2}-45 x-24}{x^{2}-9}$
Goal: $\frac{P(x)}{Q(x)}=\underbrace{S(x)}_{\text {polynomial }}+\underbrace{\frac{R(x)}{Q(x)}}_{\text {proper }}$ rational
$6 x+3\} \leftarrow$ the polynomial $s(x)$

$$
\begin{aligned}
& \left.x ^ { 2 } - 9 \longdiv { \begin{array} { l }
{ 6 x ^ { 3 } + 3 x ^ { 2 } - 4 5 x - 2 4 } \\
{ 6 x ^ { 3 } - 5 4 x }
\end{array} } + 3 x ^ { 2 } + 9 x - 2 4\right) \\
& \begin{array}{l}
3 x^{2} \quad-27 \\
\hline
\end{array} \\
& 9 x+3 \leftarrow \text { the remainder } R(x) \\
& \frac{6 x^{3}+3 x^{2}-45 x-24}{x^{2}-9}=6 x+3+\frac{9 x+3}{\text { polynomial }}+\begin{array}{c}
\text { proper } \\
\text { rational } \\
\text { function }
\end{array}
\end{aligned}
$$

Partial fraction theorem CASE I
If $\frac{R(x)}{Q(x)}$ is proper and
$Q(x)$ is a product of distinct linear polynomials

$$
\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \ldots\left(a_{k} x+b_{k}\right)
$$

then

$$
\frac{R(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\cdots+\frac{A_{k}}{a_{k} x+b_{k}} \quad \text { for some numbers } A_{1}, A_{2}, \ldots, A_{k} .
$$

Example: $\frac{5}{x^{2}-4}=\frac{5}{(x-2)(x+2)}=\frac{A}{x-2}+\frac{B}{x+2}$ for some numbers A, B

- $\frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x}=\frac{x^{2}+2 x-1}{x(2 x-1)(x+2)}=\frac{A}{x}+\frac{B}{2 x-1}+\frac{C}{x+2}$ for some numbers A, B, C
- $\frac{4 x}{(x-1)^{2}(x+1)}$ does not apply to this CASE I
because the factor $(x-1)$ appears twice! See CASE II

What is the partial fraction decomposition for $\frac{9 x+3}{x^{2}-9}$?
(a) $\frac{A}{x-3}+\frac{B}{x+3} \int \frac{9 x+3}{(x-3)(x+3)}=\frac{A}{x-3}+\frac{B}{x+3}$ by Partial Fraction
(b) $\frac{A x+B}{x-3}+\frac{C x+D}{x+3}$
(c) $\frac{A}{x^{2}}+\frac{B}{9}$
(d) $\frac{A}{x-3}+\frac{B}{(x-3)^{2}}+\frac{C}{x+3}+\frac{B}{(x+3)^{2}}$

Ex 1:

$$
\int \frac{6 x^{3}+3 x^{2}-45 x-24}{x^{2}-9} d x
$$

Step 0 If $\operatorname{deg}($ numer $) \geqslant \operatorname{deg}$ (denom),
perform long division:

$$
\frac{6 x^{3}+3 x^{2}-45 x-24}{x^{2}-9}=6 x+3+\frac{9 x+3}{x^{2}-9} \quad \text { (see prev.) }
$$

Step 1 Partial fraction decomposition for $\frac{9 x+3}{x^{2}-9}$
CASE I: Write $\frac{9 x+3}{(x-3)(x+3)}=\frac{A}{x-3}+\frac{B}{x+3}$

- Multiply both sides by the denominator
- Write both sides in standard form

$$
a_{n} x^{n}+\ldots+a_{1} x+a_{0}
$$

Ready to integrate:

$$
\begin{array}{rl}
\int \frac{6 x^{3}}{}+3 x^{2}-45 x-24 \\
x^{2}-9 & d x \\
& =\int\left[6 x+3+\frac{9 x+3}{x^{2}-9}\right] d x \\
& =\int\left[6 x+3+\frac{5}{x-3}+\frac{4}{x+3}\right] d x \\
& =\frac{6 x^{2}}{2}+3 x+5 \ln |x-3|+4 \ln |x+3|+C
\end{array}
$$

Partial fraction theorem CASE II
If $\frac{R(x)}{Q(x)}$ is proper and
$Q(x)$ has a factor $(a x+b)$ that is repeated r times, instead of $\frac{A}{a x+b}$, write $\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\frac{A_{3}}{(a x+b)^{3}}+\cdots+\frac{A_{r}}{(a x+b)^{r}}$

$$
\begin{aligned}
\text { Example: } & \cdot \frac{x^{5}}{(x+2)^{2} x^{4}}=\underbrace{\frac{A}{x+2}+\frac{B}{(x+2)^{2}}}_{\text {factor }(x+2) \text { is repeated +wise }}+\underbrace{\frac{C}{x}+} \\
& \cdot \frac{4 x}{(x-1)^{2}(x+1)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+1}
\end{aligned}
$$

factor $(x-1)$ is repeated twice

$$
\text { - } \frac{x^{3}-x+1}{x^{2}(x-1)^{3}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}+\frac{D}{(x-1)^{2}}+\frac{E}{(x-1)^{3}}
$$

x is repeated twice $x-1$ is repeated three times

What is the partial fraction decomposition for $\frac{5 x^{3}-3 x^{2}-8 x-3}{x^{4}-3 x^{3}}$
(a) $\frac{A}{x^{3}}+\frac{B}{x-3}$
(b) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x-3} \int \frac{5 x^{3}-3 x^{2}-8 x-3}{x^{3}(x-3)}=\underbrace{\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}}+\frac{D}{x-3}$
because factor x has 3 repetitions
(c) $\frac{A}{x}+\frac{B}{x-3}$
(d) $\frac{A}{x^{4}}+\frac{B}{3 x^{3}}$

$$
\text { Ex 2: } \quad \int \frac{5 x^{3}-3 x^{2}-8 x-3}{x^{4}-3 x^{3}} d x
$$

- $\operatorname{deg}($ numer $)=3<4=\operatorname{deg}$ (denom).

Dońt need to do long division.

- Partial fraction decomposition CASE II

$$
\frac{5 x^{3}-3 x^{2}-8 x-3}{x^{3}(x-3)}=\underbrace{\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}}_{x \text { has } 3 \text { repetitions }}+\frac{D}{x-3}
$$

$$
\begin{aligned}
& 5 x^{3}-3 x^{2}-8 x-3=A x^{2}(x-3)+B x(x-3)+C(x-3)+D x^{3} \\
& =A x^{3}-A 3 x^{2}+B x^{2}-B 3 x+C x-3 C+\Delta x^{3} \\
& =x^{3}[A+D]+x^{2}[-A 3+B]+x[-3 B+C]-3 C \\
& \left.\begin{array}{rl}
5 & =A \\
-3 & =-3 A+B \\
-8 & =-3 B+C \\
-3 & =-3 C
\end{array}\right\} \begin{aligned}
5=2+D \Rightarrow \\
-3=-3 A+3 \Rightarrow D=3 \\
-8=-3 B+1 \Rightarrow B=3 \\
C=1
\end{aligned}
\end{aligned}
$$

Ready to integrate:

$$
\int \frac{5 x^{3}-3 x^{2}-8 x-3}{x^{3}(x-3)} d x
$$

$$
=\int\left[\frac{2}{x}+\frac{3}{x^{2}}+\frac{1}{x^{3}}+\frac{3}{x-3}\right] d x
$$

$$
=\left[2 \ln |x|-\frac{3}{x}-\frac{1}{2 x^{2}}+3 \ln |x-3|\right]+C
$$

$$
=\ln \left(x^{2}\left|(x-3)^{3}\right|\right)-\frac{3}{x}-\frac{1}{2 x^{2}}+C
$$

Partial fraction theorem CASE III
A quadratic polynomial $a x^{2}+b x+c$ has no real root iff $b^{2}-4 a c<0$,
e.g. $x^{2}+4$

If $Q(x)$ has a quadratic factor $a x^{2}+b x+c$ which has no real root, then
the partial fraction decomposition of $\frac{R(x)}{Q(x)}$ has a term $\frac{A x+B}{a x^{2}+b x+c}$

Example: $\frac{x}{(x-2)\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{x^{2}+4}$

$$
\frac{2 x^{2}-x+4}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}
$$

Partial fraction theorem CASE IV
If $Q(x)$ has a quadratic factor $a x^{2}+b x+c$ (with no real root) which is repeated r times, the partial fraction decomposition of $\frac{R(x)}{Q(x)}$ has the sum

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{r} x+B_{r}}{\left(a x^{2}+b x+c\right)^{r}}
$$

Examples: $\frac{1-x+2 x^{2}-x^{3}}{x\left(x^{2}+1\right)^{2}}=\frac{A}{x}+\underbrace{\frac{B x+C}{x^{2}+1}+\frac{D x+E}{\left(x^{2}+1\right)^{2}}}_{\text {two repeats }}$

$$
\text { - } \frac{x^{3}+x^{2}+1}{x(x-1)\left(x^{2}+x+1\right)\left(x^{2}+1\right)^{3}}=\frac{A}{x}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+x+1}+\underbrace{\frac{E x+F}{x^{2}+1}+\frac{G x+H}{\left(x^{2}+1\right)^{2}}+\frac{I x+J}{\left(x^{2}+1\right)^{3}}}_{\text {three repeats }}
$$

Rationalizing substitutions
Turn a non-rational integrand into a rational integrand by substitution.

$$
\text { Ex 3: } \quad \int \frac{1}{x \sqrt{x+1}} d x=\int \frac{1}{\left(u^{2}-1\right)} \frac{1}{u} 2 u d u=\int \frac{2}{u^{2}-1} d u=\int \frac{2}{(u-1)(u+1)} d u
$$

$$
u=\sqrt{x+1}
$$

$$
u^{2}=x+1
$$

$$
x=u^{2}-1
$$

$$
d x=2 u d u
$$

Alternatively:
$d u=\frac{1}{2} \frac{1}{\sqrt{x+1}} d x$
$d u=\frac{1}{2} \frac{1}{u} d x$
$2 u d u=d x$

Partial fraction decomposition case I :

$$
\frac{2}{(u-1)(u+1)}=\frac{A}{u-1}+\frac{B}{u+1}
$$

$$
\begin{gathered}
E \times 4: \quad \int \frac{34 e^{x}+80}{e^{2 x}+7 e^{x}+10} d x=\int \frac{34 u+80}{u^{2}+7 u+10} \frac{1}{u} d u=\int \frac{34 u+80}{u(u+2)(u+5)} d u \\
u=e^{x}
\end{gathered}
$$

$$
\ln u=x
$$

Alternatively:

$$
d u=e^{x} d x
$$

$$
d u=u d x
$$

$$
\frac{1}{u} d u=d x
$$

Partial fraction decomposition case I:

$$
\frac{34 u+80}{(u)(u+2)(u+5)}=\frac{A}{u}+\frac{B}{u+2}+\frac{C}{u+5}
$$

