Sec 8.3 Trigonometric Substitutions

Extra (not covered):

$$
\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x \quad \int x^{3} \sqrt{x^{2}+4} d x \quad \int \frac{d x}{\left[9 x^{2}-25\right]^{\frac{3}{2}}} \int \frac{d x}{\left[x^{2}+2 x+2\right]^{2}}
$$

"Complete the square"
(A)
(B)
(C)
$E \times A:$
$\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x$ can be solved with Trig substitution

- Label so that x and $\sqrt{4-x^{2}}$ are side labels.

Either

or

will work

The derivative of $\sin \theta$ is "nicer", so 1 choose

$\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x$ can be solved with Trig substitution

Let $\frac{x}{2}=\sin \theta$, where
θ is in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Domain restriction (Sec 6.6)
so that
$\arcsin \left(\frac{x}{2}\right)=\theta$
makes sense
(2) Write $\frac{1}{\sqrt{4-x^{2}}}$ in terms of θ :
(1) $x=2 \sin \theta$

$$
d x=2 \cos \theta d \theta
$$

$$
\frac{2}{\sqrt{4-x^{2}}}=\frac{1}{\cos \theta} \Rightarrow \frac{1}{\sqrt{4-x^{2}}}=\frac{1}{2} \frac{1}{\cos \theta}
$$

(3) Write x^{2} in terms of θ :

$$
x^{2}=(2 \sin \theta)^{2}
$$

(4) Substitute endpoints so that $-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}$

$$
\begin{aligned}
& x=0 \Rightarrow \frac{0}{2}=\sin \theta \Rightarrow \theta=0 \\
& x=\sqrt{2} \Rightarrow \frac{\sqrt{2}}{2}=\sin \theta \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

$$
\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x=\int_{\theta=0}^{\theta=\frac{\pi}{4}} 2^{2}(\sin \theta)^{2} \frac{1}{2} \frac{1}{\cos \theta} 2 \cos \theta d \theta
$$

Let $\frac{x}{2}=\sin \theta$, where
θ is in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(1) $d x=2 \cos \theta d \theta$
(2) $\frac{1}{\sqrt{4-x^{2}}}=\frac{1}{2} \frac{1}{\cos \theta}$
(3) $x^{2}=(2 \sin \theta)^{2}$
(4)

$$
\begin{aligned}
& x=0 \Rightarrow \theta=0 \\
& x=\sqrt{2} \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{4}} 4(\sin \theta)^{2} d \theta \\
& =\int_{0}^{\frac{\pi}{4}} 4 \frac{1}{2}[1-\cos (2 \theta)] d \theta \\
& =\int_{0}^{\frac{\pi}{4}}[2-2 \cos (2 \theta)] d \theta
\end{aligned}
$$

$$
=2 \theta-\left.2 \frac{\sin (2 \theta)}{2}\right|_{\theta=0} ^{\theta=\frac{\pi}{4}}
$$

$$
=\left(2 \frac{\pi}{4}-\sin \left(2 \frac{\pi}{4}\right)\right)-(0-\sin (0))
$$

$$
=\frac{\pi}{2}-\sin \left(\frac{\pi}{2}\right)
$$

$$
=\frac{\pi}{2}-1 \geqslant \frac{3}{2}-1>0
$$

Summary A $\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$ can be solved with Trig substitution
so far

or

(B) $\int x^{3} \sqrt{x^{2}+4} d x$ can also be solved with trig substitution.

Label so that x and $\sqrt{4+x^{2}}$ are side labels.
What should be the label for the hypotenuse?
(a)

(b)

(c)

(d)

Ex B:

$$
\int_{0}^{2} x^{3} \sqrt{x^{2}+4} d x
$$

Either

or
 will work

$$
\frac{x}{2}=\cot (\theta)
$$

but $\frac{d}{d \theta} \tan (\theta)=[\sec (\theta)]^{2}$ is easier to work with than $\frac{d}{d \theta} \cot (\theta)=-[\csc (\theta)]^{2}$
so 1 choose

$\int_{0}^{2} x^{3} \sqrt{x^{2}+4} d x$

Let $\frac{x}{2}=\tan (\theta)$ where θ is in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

Domain restriction (Sec 6.6)
so that
$\arctan \left(\frac{x}{2}\right)=\theta$
makes sense
(1) $x=2 \tan (\theta)$

$$
d x=2(\sec (\theta))^{2} d \theta
$$

(2) Write $\sqrt{x^{2}+4}$ in terms of θ :

$$
\frac{\sqrt{x^{2}+4}}{2}=\frac{1}{\cos (\theta)}
$$

$$
\sqrt{x^{2}+4}=\frac{2}{\cos (\theta)}
$$

(3) Write x^{3} in terms of θ :

$$
x^{3}=8(\tan \theta)^{3}
$$

(4) Substitute endpoints so that $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$

$$
\begin{aligned}
& x=0 \Rightarrow \frac{0}{2}=\tan \theta \Rightarrow \theta=0 \\
& x=2 \Rightarrow \frac{2}{2}=\tan \theta \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{2} x^{3} \sqrt{x^{2}+4} d x & =\int_{\theta=0}^{\theta=\frac{\pi}{4}} 8(\tan \theta)^{3} \frac{2}{\cos \theta} 2(\sec \theta)^{2} d \theta \\
\sqrt{x^{2}+4}+ & =32 \int_{0}^{\frac{\pi}{4}}(\tan \theta)^{3}(\sec \theta)^{3} d \theta
\end{aligned}
$$

Use technique from Lecture 8.2 notes

Let $\frac{x}{2}=\tan (\theta)$ where
θ is in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(1) $d x=2(\sec (\theta))^{2} d \theta$
(2) $\sqrt{x^{2}+4}=\frac{2}{\cos (\theta)}$
(3) $x^{3}=8(\tan \theta)^{3}$
(4)

$$
\begin{aligned}
& x=0 \Rightarrow \theta=0 \\
& x=2 \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{gathered}
\int_{0}^{2} \frac{x^{3} \sqrt{x^{2}+4}}{2} d x \\
\frac{\sqrt{x^{2}+4}}{\theta}
\end{gathered}
$$

Let $\frac{x}{2}=\tan (\theta)$ where
θ is in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(1) $d x=2(\sec (\theta))^{2} d \theta$
(2) $\sqrt{x^{2}+4}=\frac{2}{\cos (\theta)}$
(3) $x^{3}=8(\tan \theta)^{3}$
(4)

$$
\begin{aligned}
& x=0 \Rightarrow \theta=0 \\
& x=2 \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

because $\frac{d}{d x} \sec (x)=\sec x \tan x$

$$
\begin{aligned}
& \left.=32 \int_{0}^{\frac{\pi}{4}}(\sec x)^{2}-1\right](\sec x)^{2} \\
& =32 \int_{u=\sec 0}^{u=\sec \frac{\pi}{4}}\left[u^{2}-1\right] u^{2} d u
\end{aligned}
$$

$$
\begin{aligned}
& \text { Apply } y \\
& (\tan x)^{2}=(\sec x)^{2}-1
\end{aligned}
$$

$u=\sec x$
$d u=\sec x \tan x d x$

Summary so far
$\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x$
(B) $\int_{0}^{2} x^{3} \sqrt{x^{2}+4} d x$
(C) $\int \frac{1}{\left.9 x^{2}-25\right]^{\frac{3}{2}}} d x$

(A) $\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$

or

(B) $\int x^{3} \sqrt{x^{2}+4} d x$
 will work
(C) $\int \frac{1}{\left[9 x^{2}-25\right]^{\frac{3}{2}}} d x$
option (a):
option (b):

Label so that x and $\sqrt{9 x^{2}-25}$ are side labels.
What should be the label for the hypotenuse?
option (c):

option (d):

Ex (C):

$$
\int \frac{1}{\left.9 x^{2}-25\right]^{\frac{3}{2}}} d x
$$

Either or
 will work
but $\frac{d}{d \theta} \sec (\theta)=\sec (\theta) \tan (\theta)$ is easier to work with than $\frac{d}{d \theta} \csc (\theta)=-\csc (\theta) \cot (\theta)$
so 1 choose

$$
\int \frac{1}{\left[9 x^{2}-25\right]^{\frac{3}{2}}} d x
$$

(1)

$$
\begin{aligned}
& x=\frac{5}{3} \sec (\theta) \\
& d x=\frac{5}{3} \sec (\theta) \tan (\theta) d \theta
\end{aligned}
$$

(2) Write $\frac{1}{\left[9 x^{2}-25\right]^{\frac{3}{2}}}$ in terms of θ :

- Let $\frac{3}{5} x=\sec (\theta)$ where
θ is in $\underbrace{\left[0, \frac{\pi}{2}\right) \text { or }\left[\pi, \frac{3 \pi}{2}\right]}_{\text {Restricted domain }}$
(from prev page)
so that $\operatorname{arcsec}\left(\frac{3}{5} x\right)=\theta$
makes sense

$$
\text { - } \frac{d}{d \theta} \sec (\theta)=\sec (\theta) \tan (\theta)
$$

$$
\begin{aligned}
& \frac{5}{\sqrt{9 x^{2}-25}}=\frac{1}{\tan \theta} \\
& \sqrt{\frac{1}{9 x^{2}-25}}=\frac{1}{5} \frac{1}{\tan \theta} \\
& \frac{1}{\left[9 x^{2}-25\right]^{\frac{3}{2}}}=\frac{1}{5^{3}} \frac{1}{(\tan \theta)^{3}}
\end{aligned}
$$

$$
\int \frac{1}{\left[9 x^{2}-25\right]^{\frac{3}{2}}} d x=\int \frac{1}{5^{3}} \frac{1}{(\tan \theta)^{3}} \frac{5}{3} \sec (\theta) \tan (\theta) d \theta
$$

Let $\frac{3}{5} x=\sec (\theta)$ where

$$
\begin{aligned}
& =\frac{1}{5^{2} 3} \int \frac{1}{(\tan \theta)^{2}} \frac{1}{\cos \theta} d \theta \\
& =\frac{1}{75} \int \frac{\cos \theta}{(\sin \theta)^{2}} d \theta
\end{aligned}
$$

θ is in $\left[0, \frac{\pi}{2}\right)$ or $\left[\pi, \frac{3 \pi}{2}\right)$
$=\frac{1}{75} \int \frac{1}{u^{2}} d u$

$$
\begin{aligned}
u & =\sin \theta \\
d u & =\cos \theta d \theta
\end{aligned}
$$

(1) $d x=\frac{5}{3} \sec (\theta) \tan (\theta) d \theta$
(2) $\frac{1}{\left[9 x^{2}-25\right]^{\frac{3}{2}}}=\frac{1}{5^{3}} \frac{1}{(\tan \theta)^{3}}$
$=\frac{1}{75}\left(-\frac{1}{u}\right)+C$
$=\frac{1}{75}\left(-\frac{1}{\sin \theta}\right)+C$

$$
=\frac{1}{75}\left(-\frac{3 x}{\sqrt{9 x^{2}-25}}\right)+C
$$

Summary so far
Extra
(not covered):
$\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x$
(B) $\int_{0}^{2} x^{3} \sqrt{x^{2}+4} d x$
(C) $\int \frac{d x}{\left[9 x^{2}-25\right]^{\frac{3}{2}}}$
(D) $\int \frac{d x}{\left[x^{2}+2 x+2\right]^{2}}$

$E \times D:$

$$
\int \frac{1}{\left[x^{2}+2 x+2\right]^{2}} d x=\int \frac{1}{\left[(x+1)^{2}+1\right]^{2}} d x
$$

Step 1 Complete the square
Turn $\left(x^{2}+2 x+2\right)$ into $(x+a)^{2}+b^{2}$

$$
\begin{aligned}
\left(x^{2}+2 x\right)+2 & =\left(x^{2}+2 x+\left(\frac{2}{2}\right)^{2}\right)+2-\left(\frac{2}{2}\right)^{2} \\
& =(x+1)^{2}+1
\end{aligned}
$$

$$
\int \frac{1}{\left[x^{2}+2 x+2\right]^{2}} d x=\int \frac{1}{\left[(x+1)^{2}+1\right]^{2}} d x
$$

If 1 want two sides to be labeled $(x+1)$ and $\sqrt{(x+1)^{2}+1}$ what should be the label for the hypotenuse?
option (a):

option (b):

option (c):

option (d):

$$
\int \frac{1}{\left[x^{2}+2 x+2\right]^{2}} d x=\int \frac{1}{\left[(x+1)^{2}+1\right]^{2}} d x
$$

Either

or
 will work
but $\frac{d}{d \theta} \tan (\theta)=[\sec (\theta)]^{2}$ is easier to work with than $\frac{d}{d \theta} \cot (\theta)=-\csc (\theta)$
so 1 choose

$$
\int \frac{1}{\left[x^{2}+2 x+2\right]^{2}} d x=\int \frac{1}{\left[(x+1)^{2}+1\right]^{2}} d x
$$

(1) $x=-1+\tan (\theta)$

Let $\frac{x+1}{2}=\tan (\theta)$
where θ is in $\underbrace{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)}$
Restricting the domain of $\tan (\theta)$ so that $\arctan \left(\frac{x+1}{1}\right)=\theta$ makes sense

$$
d x=[\sec (\theta)]^{2} d \theta
$$

(2) Write $\frac{1}{\left[(x+1)^{2}+1\right]^{2}}$ in terms of θ :

$$
\frac{1}{\sqrt{(x+1)^{2}+1}}=\cos (\theta)
$$

$$
\frac{1}{\left[(x+1)^{2}+1\right]^{2}}=[\cos (\theta)]^{4}
$$

$$
\int \frac{1}{\left[x^{2}+2 x+2\right]^{2}} d x=\int \frac{1}{\left[(x+1)^{2}+1\right]^{2}} d x=\int[\cos (\theta)]^{4}[\sec (\theta)]^{2} d \theta
$$

Let $\frac{x+1}{1}=\tan (\theta)$
where θ is in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(1) $d x=[\sec (\theta)]^{2} d \theta$
(2) $\frac{1}{\left[(x+1)^{2}+1\right]^{2}}=[\cos (\theta)]^{4}$

$$
\begin{aligned}
& =\int[\cos (\theta)]^{2} d \theta \\
& =\int \frac{1}{2}(1+\cos (2 \theta)) d \theta \\
& =\frac{1}{2}\left[\theta+\frac{\sin (2 \theta)}{2}\right]+C
\end{aligned}
$$

$\sin (t) \cos (t)=\frac{1}{2} \sin (2 t)$

$$
\stackrel{1}{2}[\underbrace{\theta}_{j}+\underbrace{\sin (\theta)}_{\text {opp }} \underbrace{\cos (\theta)}_{\text {adj }}]+C
$$

$\arctan \left(\frac{x+1}{1}\right) \frac{\text { opp }}{\text { hyp }} \frac{\operatorname{adj}}{\text { hyp }}$

$$
=\frac{1}{2}\left[\arctan (x+1)+\frac{x+1}{(x+1)^{2}+1}\right]+C
$$

MML EX

$$
\begin{aligned}
\int \frac{1}{\sqrt{t}+4 t \sqrt{t}} d t & =\int \frac{1}{\sqrt{t}} \frac{1}{1+4 t} d t \quad \begin{array}{l}
u=2 \sqrt{t} \Rightarrow 1+4 t=1+u^{2} \\
d u=2 \frac{1}{2} t^{-\frac{1}{2}} d t
\end{array} \\
& d u=\frac{1}{\sqrt{t}} d t
\end{aligned}
$$

