6.4 Areas of surfaces of revolution



Rotate L about
the $x$-axis

we get a cylinder

Surface area or lateral (side) surface area of this cylinder is equal to the area of the rectangle

which is $2 \pi y \Delta x$

Def If $f(x) \geqslant 0$ and $f^{\prime}(x)$ is continuous on $[a, b]$, the area of the surface generated by revolving the graph of $y=f(x)$ about the $x$-axis is

$$
S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Ex 1: Find the area of the surface generated by revolving the curve $y=2 \sqrt{x}, 1 \leq x \leq 2$, about the x-axis.


Sol: $S=\int_{1}^{2} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$

$$
\begin{aligned}
& y=2 x^{\frac{1}{2}} \\
& \frac{d y}{d x}=2 \frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{\sqrt{x}}
\end{aligned}
$$

$$
\left(\frac{d y}{d x}\right)^{2}=\frac{1}{x}
$$

$$
\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+\frac{1}{x}}=\sqrt{\frac{x+1}{x}}
$$

$$
\begin{array}{rlr}
S & =\int_{1}^{2} 2 \pi(2 \sqrt{x}) \sqrt{\frac{x+1}{\sqrt{x}}} d x \\
& =4 \pi \int_{1}^{2} \sqrt{x+1} d x & \begin{array}{l}
u=x+1 \\
d u=d x
\end{array} \\
& =4 \pi \int_{2}^{3} \sqrt{u} d u & u(1)=1+1=2 \\
& =4 \pi\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{u=2}^{u=3} & u(2)=2+1=3
\end{array}
$$

Ex 2:
Find the area of the surface generated by revolving $x=2 \sqrt{9-y}, \quad 0 \leq y \leq 8$ about the $y$-axis.

Sol: Sketch first
Let $f(y)=2 \sqrt{9-y}$

$$
\begin{aligned}
& x^{2}=4(9-y), \quad x \geqslant 0 \\
& x^{2}=36-4 y \\
& 4 y=-x^{2}+36 \\
& y=-\frac{1}{4} x^{2}+9, \quad 0 \leq y \leq 8
\end{aligned}
$$




Revolve about

$$
y \text {-axis }
$$

$$
\begin{aligned}
& S=\int_{y=0}^{y=8} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{0}^{8} 2 \pi f(y) \sqrt{1+\left(f^{\prime}(y)\right]^{2}} d y \\
& x=2 \sqrt{9-y}=2(9-y)^{\frac{1}{2}} \\
& \frac{d x}{d y}=2 \frac{1}{2}(9-y)^{-\frac{1}{2}}(-1)=-\frac{1}{(9-y)^{\frac{1}{2}}} \\
& \left(\frac{d x}{d y}\right)^{2}=\frac{1}{9-y}
\end{aligned}
$$

(cont Ex 2)

$$
\begin{aligned}
& \sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\sqrt{1+\frac{1}{9-y}}=\sqrt{\frac{9-y+1}{9-y}}=\frac{\sqrt{10-y}}{\sqrt{9-y}} \\
S & =\int_{0}^{8} 2 \pi \overbrace{2 \sqrt{9-y}}^{x} \frac{\sqrt{10-y}}{\sqrt{9-y}} d y \\
& =4 \pi \int_{0}^{8} \sqrt{10-y} d y \\
& =4 \pi\left[\frac{2}{3}(10-y)^{\frac{3}{2}}\right]_{0}^{8} \\
& =\frac{8 \pi}{3}\left[(10-8)^{\frac{3}{2}}-(10-0)^{\frac{3}{2}}\right] \\
& =\frac{8 \pi}{3}(2 \sqrt{2}-10 \sqrt{10})
\end{aligned}
$$

is the surface area.

