

Ex 1: Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$, about the x-axis. $\int_{1}^{y} y = 2\sqrt{x}$ $\int_{1}^{(1,2)} (2,2\sqrt{2})$ $\int_{1}^{(1,2$

$$S = \int_{1}^{2} 2\pi \left(2\sqrt{x} \right) \sqrt{\frac{x+1}{\sqrt{x}}} dx$$

$$= 4\pi \int_{1}^{2} \sqrt{x+1} dx$$

$$= 4\pi \int_{2}^{3} \sqrt{u} \, du$$

$$= 4\pi \left[\frac{1}{3}u^{\frac{3}{2}}\right]_{u=2}^{u=3}$$

$$= 4\pi \frac{2}{3} \left[3^{\frac{3}{2}} - 2^{\frac{1}{2}}\right]$$

u = X + I

 $= \frac{8\pi}{3} \left(3\sqrt{3} - 2\sqrt{2} \right) \qquad a positive number$

Made with Goodnotes

Ex 2:
Find the area of the surface generated by revolving.

$$x = \left(\sqrt{1-y}\right)^{-1}$$
 or $\leq y \leq P$ about the y-axis.
Sol: Sketch first
 $x^{2} = 4(7-Y)$, $x \geq 0$
 $x^{2} = 36 - 4y$
 $4y = -\frac{1}{4}x^{2} + 9$, $0 \leq y \leq 8$
 $y = -\frac{1}{4}x^{2} + 9$, $0 \leq y \leq 8$

Revolve about
 $y = axis$
 $S = \int_{y=0}^{7} 2\pi x \sqrt{1 + \left(\frac{4x}{4y}\right)^{2}}$ $4y = \int_{0}^{8} 2\pi f(y) \sqrt{1 + \left(\frac{1}{2}(y)\right)^{2}} dy$
 $x = 2 \sqrt{7-y} = 2 (7-y)^{\frac{1}{2}}$
 $\frac{dx}{dy} = 2 \frac{1}{2} (7-y)^{\frac{1}{2}} (-1) = -\frac{1}{(7-y)^{\frac{1}{2}}}$

Made with Goodnotes

(Cort EX 2)

$$\sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} = \sqrt{1 + \frac{1}{q-y}} = \sqrt{\frac{q-y+1}{q-y}} = \frac{\sqrt{10-y}}{\sqrt{q-y}}$$

$$S = \int_{0}^{8} 2\pi \frac{\sqrt{10-y}}{2\sqrt{9-y}} \frac{\sqrt{10-y}}{\sqrt{9-y}} dy$$

$$= 4 \pi \int_{0}^{8} \sqrt{10 - y} \, dy$$

$$= 4\pi \left[\frac{2}{3} (10 - \gamma)^{\frac{3}{2}}\right]_{0}^{8}$$

$$= \frac{8\pi}{3} \left[\left(10 - 8 \right)^{\frac{3}{2}} - \left(10 - 0 \right)^{\frac{3}{2}} \right]$$
$$= \frac{8\pi}{3} \left(2\sqrt{2} - 10\sqrt{10^{1}} \right)$$

is the surface area.