Sec 6.3 Arc length
Ex 1: Let C be the curve

$$
y=\frac{x^{3}}{12}+\frac{1}{x}
$$

from $x=1$ to $x=4$.

* Take n points on the curve, sum up the distances between adjacent points.

* The limit of this sum as $n \rightarrow \infty$ is the length or arc length of C.
* Distance between two points P_{1}, P_{2}
 is $\sqrt{(\Delta y)^{2}+(\Delta x)^{2}}$ by Pythagorean Thu

$$
=\sqrt{(\Delta y)^{2}+(\Delta x)^{2}} \frac{1}{\Delta x} \Delta x \quad \text { Now multiply by } 1=\frac{\Delta x}{\Delta x}
$$

$$
\begin{aligned}
& =\sqrt{\frac{(\Delta y)^{2}+(\Delta x)^{2}}{(\Delta x)^{2}}\left(\frac{\Delta x)^{2}}{}\right.} \Delta x \\
& =\sqrt{\left(\frac{\Delta y}{\Delta x}\right)^{2}+1} \Delta x
\end{aligned}
$$

Bring $\frac{1}{\Delta x}$ inside the radical

Def If f^{\prime} is continuous on $[a, b]$, the length or arc length of the curve $y=f(x)$ from point $A=(a, f(a))$ to $B=(b, f(b))$ is

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Sol of previous ex 1:

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{12}+\frac{1}{x}, \quad 1 \leq x \leq 4 \\
& f^{\prime}(x)=\frac{1}{12} 3 x^{2}-x^{-2}=\frac{x^{2}}{4}-x^{-2}
\end{aligned}
$$

$$
1+\left[f^{\prime}(x)\right]^{2}=\cdots
$$

goal: write as \square^{2} because the arc length formula has $\sqrt{1+\left(f^{\prime}(x)\right)^{2}}$

$$
\begin{aligned}
{\left[f^{\prime}(x)\right]^{2} } & =\left(\frac{x^{2}}{4}-x^{-2}\right)^{2} \\
& =\frac{x^{4}}{4^{2}}-2 \frac{x^{2}}{4} x^{-2}+x^{-4} \\
& =\frac{x^{4}}{4^{2}}-\frac{1}{2}+x^{-4} \\
1+\left[f^{\prime}(x)\right]^{2} & =1+\frac{x^{4}}{4^{2}}-\frac{1}{2}+x^{-4} \\
& =\frac{x^{4}}{4^{2}}+\frac{1}{2}+x^{-4} \\
& =\left(\frac{x^{2}}{4}\right)^{2}+2 \frac{x^{2}}{4} x^{-2}+\left(x^{-2}\right)^{2} \\
& =\left[\frac{x^{2}}{4}+x^{-2}\right]^{2} \because
\end{aligned}
$$

Continue w/ previous ex l:
Check:

$$
\sqrt{1+\left[f^{\prime}(x)\right]^{2}}=\frac{x^{2}}{4}+x^{-2}
$$

make sure this is $\geqslant 0$ on x in $[1,4]$

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{1}^{4}\left(\frac{x^{2}}{4}+x^{-2}\right) d x
$$

$$
=\left[\frac{1}{4} \frac{x^{3}}{3}+\frac{x^{-1}}{-1}\right]_{1}^{4}=\left(\frac{1}{12} 4^{3}-\frac{1}{4}\right)-\left(\frac{1}{12} 1^{3}-\frac{1}{1}\right)
$$

$$
\begin{aligned}
& =\frac{64}{12}-\frac{1}{4}-\frac{1}{12}+1 \\
& =\frac{72}{12}=6
\end{aligned}
$$

length of this curve is 6 .

E×2: Find the length of the curve

$$
x=\frac{1}{2}\left(e^{y}+e^{-y}\right), \quad 0 \leq y \leq 2
$$

Sol:
length is $L=\int_{y=0}^{y=2} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$

$$
\begin{aligned}
\frac{d x}{d y} & =\frac{1}{2}\left(e^{y}-e^{-y}\right) \\
\left(\frac{d x}{d y}\right)^{2} & =\left(\frac{1}{2}\left(e^{y}-e^{-y}\right)\right)^{2} \\
& =\frac{1}{4}\left(e^{2 y}-2 e^{y} e^{-y}+e^{-2 y}\right) \\
& =\frac{1}{4}\left(e^{2 y}-2+e^{-2 y}\right) \\
1+\left(\frac{d x}{d y}\right)^{2} & =\frac{4}{4}+\frac{1}{4}\left(e^{2 y}-2+e^{-2 y}\right) \\
& =\frac{1}{4}\left(e^{2 y}+2+e^{-2 y}\right) \\
& =\frac{1}{4}\left(e^{y}+e^{-y}\right)^{2} \\
& =\left[\frac{1}{2}\left(e^{y}+e^{-y}\right)\right]^{2}
\end{aligned}
$$

$\sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\frac{1}{2}\left(e^{y}+e^{-y}\right) \quad$ Make sure this value is $\geqslant 0$ for y in $[0,2]$

$$
\begin{aligned}
L=\int_{0}^{2} \frac{1}{2} e^{y}+e^{-y}=\frac{1}{2}\left[e^{y}+\frac{e^{-y}}{-1}\right]_{0}^{2} & =\frac{1}{2}\left[e^{2}-e^{-2}-\left(e^{0}-e^{0}\right)\right] \\
& =\frac{1}{2}\left(e^{2}-\frac{1}{e^{2}}\right) \text { positive number }
\end{aligned}
$$

