Sec 6.1-6.4: Applications of definite integrals

Sec 6.1 Volumes using cross-sections

Volume $=($ base areal $) \cdot($ height $)$

Method 1: Method of slicing

Let S be a solid $w /$ integrable cross-sectional area $A(x)$ from $x=a$ to $x=b$.
Volume of S is $\int_{a}^{b} A(x) d x$.

Ex (using method of slicing):
A pyramid 3 m high has a square base that is 3 m on each side. The cross-section of the pyramid perpendicular to the altitude $X \mathrm{~m}$ down from the vertex is $x m$ on each side. Find the volume.
Step 1 : Sketch the solid \& typical cross-section. with area
$x^{2} m^{2}$ $x^{2} m^{2}$

Sketch on x-axis

side of base is 3
step 2: Area of cross-section at x is $A(x)=x^{2}$ because cross-section is a square w/ side x.

Step 3: Limits of integration:
The (square) cross -sections lie on planes from $x=0$ to $x=3$.

Step 4: Integrate to find the volume:

$$
V=\int_{0}^{3} A(x) d x=\int_{0}^{3} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{3}=\frac{3^{3}}{3}-\frac{0^{3}}{3}=9
$$

volume is $9 \mathrm{~m}^{3}$.

Method 2: The disk method for computing a solid of revolution.
\rightarrow (IIID) filled circle
Ex (for the disk method):
The region between the curve $y=\sqrt{x}, 0 \leq x \leq 4$, and the line $y=0$ is revolved about the x-axis to generate a solid. Find its volume.

(a) Region

(b) Solid of revolution

$$
\text { Sol: } \begin{aligned}
& \int_{0}^{4}\left(\begin{array}{cc}
\text { area } & \text { of } \\
\text { cross section } \\
\text { at }
\end{array}\right) d x \\
= & \int_{0}^{4}\left(\begin{array}{cc}
\text { area of } \\
\text { disk } \\
\text { radius } & \text { with } \\
\sqrt{x}
\end{array}\right) d x \\
= & \int_{0}^{4} \pi(\text { radius })^{2} d x \\
= & \int_{0}^{4} \pi(\sqrt{x})^{2} d x \\
= & \int_{0}^{4} \pi x d x \\
= & \left.\pi \frac{x^{2}}{2}\right|_{0} ^{4} \\
= & \pi \frac{16}{2}-0=\pi 8
\end{aligned}
$$

Second Ex (for the disk method):
Find the volume of the solid generated by revolving the region between the y-axis and the curve $x=\frac{2}{y}, 1 \leq y \leq 4$, about the y-axis. Sol:

$$
x=\frac{2}{y} \Leftrightarrow y=\frac{2}{x}
$$

Radius of disk is distance from $x=\frac{2}{y}$ to $x=0: \frac{2}{y}$ $\xrightarrow[0]{2}$
(a) Region which is to be $\underset{\substack{\text { radius } \\ \text { of }}}{\phi}=\left.\pi 4 \frac{y^{-1}}{-1}\right|_{1} ^{4}$ disk

$$
=-4 \pi\left[\frac{1}{y}\right]_{1}^{4}
$$

$$
=-4 \pi\left[\frac{1}{4}-1\right]=3 \pi
$$

(b)

Method 3: The washer method for computing a solid of revolution.

This method is to be used when the cross -section is not a disk
but a washer

\rightarrow this means the solid has a hole

Volume of washer rotated about the x-axis

$$
\int_{a}^{b} \pi(\underbrace{(R(x))^{2}}_{\begin{array}{c}
\text { outer } \\
\text { radius } \\
\text { of washer }
\end{array}}-\underbrace{(r(x))^{2}}_{\begin{array}{c}
\text { inner } \\
\text { radius }
\end{array}}) d x
$$

Ex (for the washer method):
The region bounded by the curve $y=x^{2}+1$ \& the line $y=-x+3$ is revolved about the x-axis to generate a solid. Find the volume of the solid.

Intersection points: Set $x^{2}+1=-x+3 \Rightarrow x^{2}+x-2=0 \Rightarrow(x+2)(x-1)=0 \Rightarrow x=-2, x=1$
outer radius: $R(x)=-x+3$
inner radius: $r(x)=x^{2}+1$
(because the line has higher y-value than the parabola)

Volume is $\quad V=\int_{a}^{b} \pi\left([R(x)]^{2}-[r(x)]^{2}\right) d x$

$$
\begin{aligned}
& =\int_{-2}^{1} \pi\left((-x+3)^{2}-\left(x^{2}+1\right)^{2}\right) d x \\
& =\pi \int_{-2}^{1}\left(8-6 x-x^{2}-x^{4}\right) d x \\
& =\pi\left[8 x-3 x^{2}-\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{-2}^{1}=\frac{117 \pi}{5} .
\end{aligned}
$$

Ind Ex (for washer method):
EXAMPLE 10 The region bounded by the parabola $y=x^{2}$ and the line $y=2 x$ in the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the solid.
axis of revolution
Solution First we sketch the region and draw a line segment across it perpendicular to the axis of revolution (the y-axis). See Figure 6.15a.

The radii of the washer swept out by the line segment are $R(y)=\sqrt{y}, r(y)=y / 2$ (Figure 6.15).

The line and parabola intersect at $y=0$ and $y=4$, so the limits of integration are $c=0$ and $d=4$. We integrate to find the volume:

$$
\begin{array}{rlrl}
V & =\int_{c}^{d} \pi\left([R(y)]^{2}-[r(y)]^{2}\right) d y & & \text { Rotation around } y \text {-axis } \\
& =\int_{0}^{4} \pi\left([\sqrt{y}]^{2}-\left[\frac{y}{2}\right]^{2}\right) d y & & \begin{array}{l}
\text { Substitute for radii and } \\
\text { limits of integration. }
\end{array} \\
& =\pi \int_{0}^{4}\left(y-\frac{y^{2}}{4}\right) d y=\pi\left[\frac{y^{2}}{2}-\frac{y^{3}}{12}\right]_{0}^{4}=\frac{8}{3} \pi &
\end{array}
$$

(a)

Region to be rotated about the y-axis

(b)

The washer swept out by the line segment

