Sec 5.6 Definite Integral Substitution \& the area between curves

Ex: Evaluate $\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x$
Method A Cold):
Step 1: Find an antiderivative of $f(x)=3 x^{2} \sqrt{x^{3}+1}$

$$
\int 3 x^{2} \sqrt{x^{3}+1} d x=\int \sqrt{u} d u
$$

Try $u=x^{3}+1$

$$
\begin{aligned}
& =\int u^{\frac{1}{2}} d u \\
& =\frac{2}{3} u^{\frac{3}{2}}+C \\
& =\frac{2}{3}\left(x^{3}+1\right)^{\frac{3}{2}}+C
\end{aligned}
$$

We only need one of the antiderivatives of $f(x)=3 x^{2} \sqrt{x^{3}+1}$ so we can take $F(x)=\frac{2}{3}\left(x^{3}+1\right)^{\frac{3}{2}} \quad$ (we choose $c:=0$)

Step 2:

$$
\begin{aligned}
& \int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x \underset{4}{4}=\left.F(x)\right|_{-1} ^{1}=\left.\frac{2}{3}\left(x^{3}+1\right)^{\frac{3}{2}}\right|_{-1} ^{1}=\frac{2}{3}\left[\left(1^{3}+1\right)^{\frac{3}{2}}-(-1+1)^{\frac{3}{2}}\right] \\
& \operatorname{Part2} \\
& \operatorname{Sec} 5.4=\frac{2}{3}(2)^{\frac{3}{2}} \\
&=\frac{2}{3} \sqrt{2^{3}} \\
&=\frac{4}{3} \sqrt{2}
\end{aligned}
$$

Apply substitution directly to definite integrals:

$$
\begin{aligned}
\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x & =\int_{u=(-1)^{3}+1}^{u=1^{3}+1} \sqrt{u} d u \text { change limits of } \\
d u=3 x^{2} d x & =\int_{0}^{2} u^{\frac{1}{2}} d u \\
& =\left.\frac{2}{3} u^{\frac{3}{2}}\right|_{u=0} ^{u=2} \\
& =\frac{2}{3}(2)^{\frac{3}{2}}-\frac{2}{3}(0)^{\frac{3}{2}} \\
& =\frac{4}{3} \sqrt{2}
\end{aligned}
$$

EXAMPLE 2 We use the method of transforming the limits of integration.
(a) $\int_{\pi / 4}^{\pi / 2} \cot \theta \csc ^{2} \theta d \theta=\int_{1}^{0} u \cdot(-d u)$

Let $u=\cot \theta, d u=-\csc ^{2} \theta d \theta$, $-d u=\csc ^{2} \theta d \theta$.
When $\theta=\pi / 4, u=\cot (\pi / 4)=1$.

$$
=-\int_{1}^{0} u d u
$$

$$
=-\left[\frac{u^{2}}{2}\right]_{1}^{0}
$$

$$
=-\left[\frac{(0)^{2}}{2}-\frac{(1)^{2}}{2}\right]=\frac{1}{2}
$$

(b) $\quad \int_{-\pi / 4}^{\pi / 4} \tan x d x=\int_{-\pi / 4}^{\pi / 4} \frac{\sin x}{\cos x} d x$

$$
\begin{aligned}
& =-\int_{\sqrt{2} / 2}^{\sqrt{2} / 2} \frac{d u}{u} \\
& =0
\end{aligned}
$$

Let $u=\cos x, d u=-\sin x d x$.
When $x=-\pi / 4, u=\sqrt{2} / 2$.
When $x=\pi / 4, u=\sqrt{2} / 2$.

Ex: Evaluate $\int_{-\ln \sqrt{3}}^{0} \frac{e^{x}}{1+e^{2 x}} d x=\int^{u=e^{0}} \frac{1}{1+u^{2}} d u$

$$
-\ln \sqrt{3} \quad u=e^{-\ln \sqrt{3}}
$$

Try $u=1+e^{2 x}$

$$
d u=2
$$

Try $u=e^{x}$

$$
\begin{aligned}
& d u=e^{x} d x \\
& \frac{1}{1+e^{2 x}}=\frac{1}{1+u^{2}}
\end{aligned}
$$

How 1 got $\frac{1}{\sqrt{3}}$

$$
=\int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{1+u^{2}} d u \quad e^{-\ln (\sqrt{3})}=\left\{e^{\ln \left((\sqrt{3})^{-1}\right)}=3^{-\frac{1}{2}}\right.
$$

$=\left.\operatorname{Arctan}(u)\right|_{\frac{1}{\sqrt{3}}} ^{1}$
$=\operatorname{Arctan}(1)-\operatorname{Arctan}\left(\frac{1}{\sqrt{3}}\right)$
$=\frac{\pi}{4}-\frac{\pi}{6}$
$=\frac{3 \pi-2 \pi}{12}$

$$
=\frac{\pi}{12}
$$

How 1 got $\frac{\pi}{4}$ and $\frac{\pi}{6}$

$$
\left[\begin{array}{l}
\tan \theta=\frac{\sin \theta}{\cos \theta} \\
\tan \theta=1 \Rightarrow \sin \theta=\cos \theta \Rightarrow \theta=\frac{\pi}{4} \\
\tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \sin \theta=\frac{1}{2}, \cos \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta=\frac{\pi}{6}
\end{array}\right]
$$

Tho:

If f is even
(meaning $f(-x)=f(x)$)
then

$$
\int_{-a}^{a} f(x) d x=\int_{0}^{a} f(x) d x
$$

(a)

Ex: $\quad \cos (x)$ is even.

$$
\begin{aligned}
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos (x) d x & =2 \int_{0}^{\frac{\pi}{4}} \cos (x) d x \\
& =\left.2 \sin (x)\right|_{0} ^{\frac{\pi}{4}} \\
& =2 \sin \left(\frac{\pi}{4}\right)-2 \sin (0) \\
& =2 \frac{\sqrt{2}}{2}-0 \\
& =\sqrt{2}
\end{aligned}
$$

If f is odd
(meaning $f(-x)=-f(x)$) then

$$
\int_{-a}^{a} f(x) d x=0
$$

(b)
$\sin (x)$ is odd

$$
\int_{-100}^{100} \sin (x) d x=0
$$

Def: If $f(x) \geqslant g(x)$ on $[a, b]$,
the area of the region between curves $y=f(x)$ and $y=g(x)$
from a to b is $\int_{a}^{b}(f(x)-g(x)) d x$
Ex Find the area of the region in the first quadrant that is bounded above by $y=\sqrt{x} \# 7$ and bounded below by the x-axis \& line $y=x-2$.

To find intersection, set $\sqrt{x}=x-2$, solve:

$$
\begin{aligned}
& x=(x-2)^{2} \\
& x=x^{2}-4 x+4 \\
& 0=x^{2}-5 x+4 \\
& 0=(x-1)(x-4) \\
& x=1,4
\end{aligned}
$$

If $x=1, y=1-2=-1$ $(1,-1)$ is not in 1st Quadrant

$$
\text { If } x=4, y=4-2=2
$$

$(4,2)$ is in 1st Quadrant

$$
\begin{aligned}
& =\underbrace{\int_{0}^{2} \sqrt{x} d x}_{\text {area of } A}+\underbrace{\int_{2}^{4}(\sqrt{x}-x+2) d x}_{\text {area of } B} \\
& =\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{2}+\left[\frac{2}{3} x^{3 / 2}-\frac{x^{2}}{2}+2 x\right]_{2}^{4} \\
& =\frac{2}{3}(2)^{3 / 2}-0+\left(\frac{2}{3}(4)^{3 / 2}-8+8\right)-\left(\frac{2}{3}(2)^{3 / 2}-2+4\right) \\
& =\frac{2}{3}(8)-2=\frac{10}{3} .
\end{aligned}
$$

Alternative method (easier for this ex) Integrate with respect to y
$x=y+2$ is bigger function (more to the right)
 $x=y^{2}$ is smaller function (more to the left)

Area is

$$
\begin{aligned}
\text { is } \int_{y=0}^{y=2}\left[(y+2)-y^{2}\right] d x & =\frac{y^{2}}{2}+2 y-\left.\frac{y^{3}}{3}\right|_{0} ^{2} \\
\text { Now upper and lower bounds } & =\frac{2^{2}}{2}+2(2)-\frac{2^{3}}{3}-(0+0-0) \\
\text { correspond to horizontal } & =2+4-\frac{8}{3} \\
\text { lines } y=0 \text { and } y=2 & =\frac{6+12-8}{3} \\
& =\frac{10}{3}
\end{aligned}
$$

