Sec 5.5 Indefinite integrals and the substitution method

Recall Sec 4.8: $\int f(x) d x$ is the set of all antiderivatives of $f(x)$.
If we know one antiderivative $F(x)$ of $f(x)$, we can write

$$
\int f(x) d x=F(x)+C
$$

Def of differential (see sec 3.11):
Let $u=g(x)$ be a differentiable function.
The differential $d x$ is an independent variable.
The differential $d u=g^{\prime}(x) d x$ or $d u=\left(\frac{d u}{d x}\right) d x$

$$
\text { Ex: } u=x^{3}+x \Rightarrow \frac{d u}{d x}=3 x^{2}+1 \Rightarrow d u=\left(3 x^{2}+1\right) d x
$$

Ex: If $u(x)$ is differentiable and $n \neq-1$,

$$
\frac{d}{d x}\left(\frac{u^{n+1}}{n+1}\right)_{\substack{\text { Chain } \\ \text { Rule }}}=(n+1) \frac{u^{n}}{n+1} \cdot \frac{d u}{d x}=u^{n} \frac{d u}{d x}
$$

So

$$
\underbrace{\frac{u^{n+1}}{n+1}+C}_{F(x)+C}=\int \underbrace{\left(u^{n} \frac{d u}{d x}\right)}_{f(x)} d x
$$

Rewrite $\frac{d u}{d x} d x$ as the differential $d u$, so

$$
\begin{aligned}
& \frac{u^{n+1}}{n+1}+C=\int u^{n} d u \\
& \int u^{n} d u=\frac{u^{n+1}}{n+1}+C
\end{aligned}
$$

Ex: Find the indefinite integral $\int\left(x^{3}+x\right)^{5}\left(3 x^{2}+1\right) d x$.

Answer: Set $u=x^{3}+x \Rightarrow \frac{d u}{d x}=3 x^{2}+1 \Rightarrow d u=\left(3 x^{2}+1\right) d x$
may skip middle step

$$
\begin{aligned}
\int\left(x^{3}+x\right)^{5}\left(3 x^{2}+1\right) d x & =\int u^{5} d u \\
& =\frac{u^{6}}{6}+C \\
& =\frac{\left(x^{3}+x\right)^{6}}{6}+C
\end{aligned}
$$

Ex: Evaluate the indefinite integral $\int \sqrt{2 x+1} d x$
Answer: Try $u=2 x+1 \Rightarrow \frac{d u}{d x}=2 \Rightarrow d u=2 d x$

$$
\Rightarrow \quad \frac{1}{2} d u=d x
$$

$$
\begin{aligned}
\int \sqrt{2 x+1} d x & =\int \sqrt{u} \frac{1}{2} d u \\
& =\frac{1}{2} \int u^{\frac{1}{2}} d u \\
& =\frac{1}{2} \frac{u^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}+C \\
& =\frac{1}{2} \frac{2}{3} u^{\frac{3}{2}}+C
\end{aligned}
$$

$$
\left.=\frac{1}{3}(2 x+1)^{\frac{3}{2}}+C \quad \text { (Sub back } \quad u=2 x+1\right)
$$

Tho (The substitution Rule or "u-substitution") If $u(x)$ is differentiable and f is continuous, then

$$
\int f(u(x)) \cdot u^{\prime}(x) d x=\int f(u) d u
$$

Why?
Let F be an antiderivative of f, that is, $F^{\prime}=f$
$\frac{d}{d x} F(u(x))=\frac{d F}{d u} \cdot \frac{d u}{d x}$ by Chain Rule

$$
=f(u(x)) \cdot \frac{d u}{d x}
$$

$$
\int f(u) d u=\int F^{\prime}(u) d u \quad \text { since } F^{\prime}=f
$$

$=F(u)+C$ (main the in Sec 4.8 says the most general antiderivative of f is $F(u)+C$)

$$
\begin{aligned}
& =F(u(x))+C \\
& =\int\left(\frac{d}{d x} F(u(x))\right) d x \\
& =\int\left(f(u(x)) \cdot \frac{d u}{d x}\right) d x
\end{aligned}
$$

EXAMPLE 3 Find $\int \sec ^{2}(5 x+1) \cdot 5 d x$

Solution We substitute $u=5 x+1$ and $d u=5 d x$. Then

$$
\begin{aligned}
\int \sec ^{2}(5 x+1) \cdot 5 d x & =\int \sec ^{2} u d u & & \text { Let } u=5 x+1, d u=5 d x . \\
& =\tan u+C & & \frac{d}{d u} \tan u=\sec ^{2} u \\
& =\tan (5 x+1)+C . & & \text { Substitute } 5 x+1 \text { for } u .
\end{aligned}
$$

EXAMPLE $4 \quad$ Find $\int \cos (7 \theta+3) d \theta$.

Solution We let $u=7 \theta+3$ so that $d u=7 d \theta$. There is a factor of 7 in this formula for $d u$, but there is no corresponding 7 preceding $d \theta$ in the integral. We can compensate for this by multiplying and dividing by 7, using the same procedure as in Example 2. Then

$$
\begin{aligned}
\int \cos (7 \theta+3) d \theta & =\frac{1}{7} \int \cos (7 \theta+3) \cdot 7 d \theta & & \text { Place factor } 1 / 7 \text { in front of integral. } \\
& =\frac{1}{7} \int \cos u d u & & \text { Substitute } u=7 \theta+3, d u=7 d \theta . \\
& =\frac{1}{7} \sin u+C & & \text { Integrate. } \\
& =\frac{1}{7} \sin (7 \theta+3)+C . & & \text { Replace } u \text { by } 7 \theta+3 .
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { Ex: } \int \tan x d x & =\int \frac{\sin x}{\cos x} d x=\int \frac{-d u}{u} & & u=\cos x, d u=-\sin x d x \\
& =-\ln |u|+C=-\ln |\cos x|+C & \\
& =\ln \frac{1}{|\cos x|}+C=\ln |\sec x|+C & & \text { Reciprocal Rule }
\end{array}
$$

Ex: $\int \sec x d x=\int(\sec x)(1) d x=\int \sec x \cdot \frac{\sec x+\tan x}{\sec x+\tan x} d x \quad \frac{\sec x+\tan x}{\sec x+\tan x}$ is equal to 1 .

$$
=\int \frac{\sec ^{2} x+\sec x \tan x}{\sec x+\tan x} d x
$$

$$
=\int \frac{d u}{u}
$$

$$
u=\tan x+\sec x
$$

$$
=\ln |u|+C=\ln |\sec x+\tan x|+C
$$

Integrals of the tangent, cotangent, secant, and cosecant functions

$$
\begin{array}{ll}
\int \tan x d x=\ln |\sec x|+C & \int \sec x d x=\ln |\sec x+\tan x|+C \\
\int \cot x d x=\ln |\sin x|+C & \int \csc x d x=-\ln |\csc x+\cot x|+C
\end{array}
$$

Ex: $\quad \int \frac{x}{\sqrt{x-10}} d x=\int \frac{u+10}{\sqrt{u}} d u=\int\left(\frac{u}{\sqrt{u}}+\frac{10}{\sqrt{u}}\right) d u$

$$
d u=1 d x
$$

$$
\begin{aligned}
& =\int\left(u^{\frac{1}{2}}+10 u^{-\frac{1}{2}}\right) \cdot d u \\
& =\frac{u^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}+10 \frac{u^{-\frac{1}{2}+1}}{\left(-\frac{1}{2}+1\right)}+C
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{u^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}+10 \frac{u^{-\frac{1}{2}+1}}{\left(-\frac{1}{2}+1\right)}+C \\
& =\frac{2}{3} u^{\frac{3}{2}}+10 \frac{u^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}+C \\
& =\frac{2}{3} u^{\frac{3}{2}}+20 u^{\frac{1}{2}}+C \\
& =\frac{2}{3}(x-10)^{\frac{3}{2}}+20(x-10)^{\frac{1}{2}}+C
\end{aligned}
$$

(A very similar example)
EXAMPLE 6 Evaluate $\int x \sqrt{2 x+1} d x$.

Solution Our previous experience with the integral in Example 2 suggests the substitudion $u=2 x+1$ with $d u=2 d x$. Then

$$
\sqrt{2 x+1} d x=\frac{1}{2} \sqrt{u} d u .
$$

However, in this example the integrand contains an extra factor of x that multiplies the factor $\sqrt{2 x+1}$. To adjust for this, we solve the substitution equation $u=2 x+1$ for x to obtain $x=(u-1) / 2$ and find that

$$
x \sqrt{2 x+1} d x=\frac{1}{2}(u-1) \cdot \frac{1}{2} \sqrt{u} d u .
$$

The integration now becomes

$$
\begin{aligned}
\int x \sqrt{2 x+1} d x & =\frac{1}{4} \int(u-1) \sqrt{u} d u=\frac{1}{4} \int(u-1) u^{1 / 2} d u & & \text { Substitute. } \\
& =\frac{1}{4} \int\left(u^{3 / 2}-u^{1 / 2}\right) d u & & \text { Multiply terms by } u^{1 / 2} . \\
& =\frac{1}{4}\left(\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right)+C & & \text { Integrate. } \\
& =\frac{1}{10}(2 x+1)^{5 / 2}-\frac{1}{6}(2 x+1)^{3 / 2}+C . & & \text { Replace } u \text { by } 2 x+1 .
\end{aligned}
$$

EXAMPLE 9 Evaluate $\int \frac{2 z d z}{\sqrt[3]{z^{2}+1}}$.
Solution We will use the substitution method of integration as an exploratory tool: We substitute for the most troublesome part of the integrand and see how things work out. For the integral here, we might try $u=z^{2}+1$, or we might even press our luck and take u to be the entire cube root. In this example both substitutions turn out to be successful, but that is not always the case. If one substitution does not help, a different substitution may work instead.
Method 1: \quad Substitute $u=z^{2}+1$.

$$
\begin{aligned}
\int \frac{2 z d z}{\sqrt[3]{z^{2}+1}} & =\int \frac{d u}{u^{1 / 3}} & & \begin{array}{l}
\text { Let } u=z^{2}+1 \\
d u=2 z d z
\end{array} \\
& =\int u^{-1 / 3} d u & & \text { In the form } \int u^{n} d u \\
& =\frac{u^{2 / 3}}{2 / 3}+C & & \text { Integrate. } \\
& =\frac{3}{2} u^{2 / 3}+C & & \\
& =\frac{3}{2}\left(z^{2}+1\right)^{2 / 3}+C & & \text { Replace } u \text { by } z^{2}+1 .
\end{aligned}
$$

Method 2: Substitute $u=\sqrt[3]{z^{2}+1}$ instead.

$$
\begin{aligned}
\int \frac{2 z d z}{\sqrt[3]{z^{2}+1}} & =\int \frac{3 u^{2} d u}{u} & & \begin{array}{l}
\text { Let } u=\sqrt[3]{z^{2}+1} \\
u^{3}=z^{2}+1,3 u^{2} d u=2 \\
\end{array} \\
& =3 \int u d u & & \\
& =3 \cdot \frac{u^{2}}{2}+C & & \text { Integrate. } \\
& =\frac{3}{2}\left(z^{2}+1\right)^{2 / 3}+C & & \text { Replace } u \text { by }\left(z^{2}+1\right)^{1 / 3}
\end{aligned}
$$

