Sec 5.4 The Fundamental Theorem of Calculus

Developed by Leibniz & Newton (independent of each other) during 1600s.

Mean Value Theorem If f is continuous on
$$[a,b]$$
,
then there is c in $[a,b]$ such that
Defined as limit of Riemann sums (If $f(x) \ge 0$, also defined as
 $f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$
The average value of f on $[a,b]$

In other words, there is c in [a,b] such that f(c) equals the average value of f on [a,b].

(FTC)

FIGURE 5.16 The value f(c) in the Mean Value Theorem is, in a sense, the average (or *mean*) height of f on [a, b]. When $f \ge 0$, the area of the rectangle is the area under the graph of f from a to b,

$$f(c)(b - a) = \int_a^b f(x) \, dx.$$

Ex:

FIGURE 5.18 The function $f(x) = 9x^2 - 16x + 4$ satisfies $\int_0^2 f(x) dx = 0$, and there are two values of *c* in the interval [0, 2] where f(c) = 0.

Fundamental Thm Part 1 an open interval
Suppose
$$f$$
 is continuous on I , and let $a \in I$.
If $F(x) = \int_{a}^{x} f(t) dt$, then $F'(x) = f(x)$
 $\frac{d}{dx} \left(\int_{a}^{x} f(t) dt\right)$

Ex: Use the Fundamental The Part 1 to find
$$\frac{dy}{dx}$$

for $y = \int_{4}^{x} \frac{1}{\ln t} dt$.
Answer: Let $F(x) = \int_{4}^{x} \frac{1}{\ln t} dt$
 $F'(x) = \frac{d}{dx} \left(\int_{4}^{x} \frac{1}{\ln t} dt \right) = f(x) = \frac{1}{\ln(x)}$
 $\frac{dy}{dx} = \frac{1}{\ln x}$
FTC Part 1

More challenging Ex:

Use the Fundamental Thm Part 1 to find dy for $y = \int_{-\infty}^{\infty} \cos(t) dt$ Answer: • $y = \int_{1}^{x^2} \cos(t) dt$ is a composition of two functions $F(u) = \int_{1}^{u} \cos(t) dt$ and $u(x) = x^{2}$: $y(x) = F(u(x)) = F(x^{2})$ $\frac{dF}{du} = \frac{d}{du} \left| \int_{1}^{u} \cos(t) dt \right| = \cos(u)$ FTC Part 1 $\frac{du}{dx} = \frac{d}{dx} \left(x^2 \right) = 2x$ $a \frac{dy}{dx} = \frac{dF}{dx} \cdot \frac{dy}{dx}$ = Cos(u). 2x $= \cos(x^2) 2X$

In general,
$$\frac{d}{dx} \left(\begin{matrix} u(x) \\ f(t) \\ d \end{matrix} \right) = f(u(x)) \cdot \frac{du}{dx}$$

Similar Ex:

Use the Fundamental Thm Part 1 to find
$$\frac{dy}{dx}$$

for $y = \int_{1}^{\sqrt{X}} \cos(t) dt$
Answer:
 $y = \int_{1}^{\sqrt{X}} \cos(t) dt$ is a composition of two functions
 $F(u) = \int_{1}^{u} \cos(t) dt$ and $u(x) = \sqrt{x}^{1}$:
 $y(x) = F(u(x)) = F(U\overline{x})$
 $\frac{dF}{du} = \frac{d}{du} \left[\int_{1}^{u} \cos(t) dt \right] = \cos(u)$
 $FTC Part 1$
 $\frac{dy}{dx} = \frac{d}{du} (\sqrt{x}) = \frac{d}{dx} (x^{\frac{1}{2}}) = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2} \frac{1}{\sqrt{x^{\frac{1}{2}}}} = \frac{1}{2\sqrt{x^{\frac{1}{2}}}}$
 $\frac{dy}{dx} = \frac{dF}{du} - \frac{du}{dx}$
 $= (\cos(u) \cdot \frac{1}{2\sqrt{x}})$
 $\frac{\cos(d\overline{x})}{2\sqrt{x}}$

Another
$$E_X$$
 (for FTC Part 1):
Find $\frac{dY}{dx}$ for $Y = \int_{-1}^{0} \frac{1}{1+t^2} dt$
 $-t_{on}(x)$

Answer:

_

$$\int_{-1}^{0} \frac{1}{1+t^2} dt = -\int_{0}^{-1} \frac{1}{1+t^2} dt$$

Rule 1 of definite
integrals from
Sec 5.3
$$\int_{a}^{b} f(t) dt = -\int_{b}^{a} f(t) dt$$

$$\frac{dY}{dx} = \frac{d}{dx} \left[-\int_{0}^{t} \frac{1}{1+t^{2}} dt \right]$$
$$= -\frac{d}{dx} \left[\int_{0}^{t} \frac{1}{1+t^{2}} dt \right] \qquad \text{Here } f(u) = \frac{1}{1+u^{2}}$$
$$u(x) = tan(x)$$

$$= - \frac{1}{1 + u^{2}} \cdot \frac{du}{dx}$$

$$= - \frac{1}{1 + (\tan(x))^{2}} \cdot \frac{d}{dx} (\tan(x))$$

$$= - \frac{(\sec(x))^{2}}{1 + (\tan(x))^{2}} \quad \text{Trig identifies:}$$

$$= - \frac{(\sec(x))^{2}}{1 + (\tan(x))^{2}} \quad \text{Trig identifies:}$$

$$= - \frac{(\sec(x))^{2}}{(\cos^{2}x)} \quad \text{Trig identifies:}$$

$$= -\frac{\sec^2(x)}{\sec^2(x)}$$

= -1

Fundamental Thm Part 2.
Suppose f is continuous on
$$[a, b]$$
.
If F is an antiderivative of f on $[a, b]$, then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
Notation: write $F(a) \int_{a}^{b}$ or $F(a) \int_{a}^{b}$ or $[F(a)]_{a}^{b}$ to mean $F(b) - F(a)$.
Notation: write $F(a) \int_{a}^{b}$ or $F(a) \int_{a}^{b}$ or $[F(a)]_{a}^{b}$ to mean $F(b) - F(a)$.
Notation: definite integral $\int_{a}^{b} f(x) dx (finit ef filtemann) and$
indefinite integral $\int_{a}^{b} f(x) dx = F(a) \int_{a}^{b} f(x) dx (functions whole derivative):$

$$\int_{a}^{b} f(x) dx = F(b) \int_{a}^{b} f(x) dx (functions whole derivative):$$

$$\int_{a}^{b} f(x) dx = F(b) \int_{a}^{b} f(x) dx (indefinite integral)$$

$$\frac{\xi}{x} (f(x) + F(c) + f(a)) = [x^{3/2} + \frac{4}{x}]_{1}^{4} = [(4)^{3/2} + \frac{4}{4}] - [(1)^{3/2} + \frac{4}{1}] = [8 + 1] - [5] = 4$$

$$\frac{\#}{a} = \int_{0}^{1} \frac{dx}{x^{2} + 1} = \ln |x + 1| \int_{0}^{1} \frac{dx}{x^{2} + 1} = \tan^{-1}x \int_{0}^{1} \frac{dx}{x^{2} + 1} = \tan^{-1}x = \frac{\pi}{4}$$

$$\frac{\text{More}}{\text{Find the total area between the region } y = \sec(k) \tan(k)$$
and the x-axis, between $x = -\frac{\pi}{4}$ and $x = \frac{\pi}{4}$.
$$\frac{-\frac{\pi}{4}}{\frac{\pi}{4}}$$

$$\frac{-\frac{\pi}{4}}{\frac{\pi}{4}}$$

$$\frac{-\frac{\pi}{4}}{\frac{\pi}{4}}$$

$$\frac{-\frac{\pi}{4}}{\frac{\pi}{4}}$$

$$\frac{-\frac{\pi}{4}}{\frac{\pi}{4}}$$

$$\frac{-\frac{\pi}{4}}{\frac{\pi}{4}}$$

$$\frac{\pi}{4}$$
We put experime because $\frac{\pi}{4}$ size $x = 5 \text{ for } x =$

Displacement & Distance Traveled Ex:
• A rock is blown straight up from the ground.
Velocity of the rock after t secs is
$$v(t) - (60 - 32t) f_{loc.}$$

• Position of the rock after t secs is
 $\int_{0}^{t} v(t) dt = \int_{0}^{t} |u_0 - 32t| ft$
• Total distance traveled after t secs is
 $\int_{0}^{t} |v(t)| dt = \int_{0}^{t} |160 - 32| ft$
when the rock moves in the negative direction,
we want to think of it as moving in the positive direction
• Q: Find the position of the rock after 8 secs
Ans: $\int_{0}^{8} (160 - 32t) dt = \left[160 t - 32t^{2} \right]_{0}^{8}$
 $= 160(8) - 3t(8) - (0 - 0)$
 $= 256 - ft$
• Q: Find total distance traveled after 8 secs.
Ans: $\int_{0}^{8} |u_0| dt = \int_{0}^{8} |u_0| dt + \int_{0}^{8} |u_0| dt$
 $= \int_{0}^{8} (160 - 32t) dt - \int_{0}^{8} (160 - 32t) dt$ $|u_0| = -(160 - 32t) over [5.8]$

$$= \begin{bmatrix} 160t - 16t^2 \end{bmatrix}_0^5 - \begin{bmatrix} 160t - 16t^2 \end{bmatrix}_5^8$$

= [(160)(5) - (16)(25)] - [(160)(8) - (16)(64) - ((160)(5) - (16)(25))]
= 400 - (-144) = 544. ft