Sec 5.4 The Fundamental Theorem of Calculus
Developed by Leibniz \& Newton (independent of each other) during 1600 s .

Mean Value Theorem If f is continuous on $[a, b]$,
then there is c in $[a, b]$ such that

Defined as limit of Riemann sums (if $f(x) \geqslant 0$, also defined as $f(c)=\frac{1}{b} \int_{a}^{b} f(x) d x$ area under the curve $y=f(x)$ over $[a, b]$)

The average value of f on $[a, b]$

In other words, there is c in $[a, b]$ such that $f(c)$ equals the average value of f on $[a, b]$.

FIGURE 5.16 The value $f(c)$ in the Mean Value Theorem is, in a sense, the average (or mean) height of f on $[a, b]$. When $f \geq 0$, the area of the rectangle is the area under the graph of f from a to b,

$$
f(c)(b-a)=\int_{a}^{b} f(x) d x
$$

FIGURE 5.18 The function
$f(x)=9 x^{2}-16 x+4$ satisfies $\int_{0}^{2} f(x) d x=0$, and there are two values of c in the interval $[0,2]$ where $f(c)=0$.

Fundamental Tho Part 1 an open interval
Suppose f is continuous on I, and let $a \in I$.
If $F(x)=\int_{a}^{x} f(t) d t$, then $F^{\prime}(x)=f(x)$

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right]
$$

Ex: Use the Fundamental The Part 1 to find $\frac{d y}{d x}$ for $y=\int_{4}^{x} \frac{1}{\ln t} d t$.
Answer: Let $F(x)=\int_{4}^{x} \frac{1}{\ln t} d t$

$$
\begin{aligned}
& F^{\prime}(x)=\frac{d}{d x}\left[\int_{4}^{x} \frac{1}{\ln t} d t\right]=f(x)=\frac{1}{\ln (x)} \\
& \text { FTC Part } 1
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{1}{\ln x}
$$

More challenging Ex:
Use the Fundamental Tho Part 1 to find $\frac{d y}{d x}$ for $y=\int_{1}^{x^{2}} \cos (t) d t$

Answer:

- $y=\int_{1}^{x^{2}} \cos (t) d t$ is a composition of two functions

$$
F(u)=\int_{1}^{u} \cos (t) d t \text { and } u(x)=x^{2}
$$

$y(x)=F(u(x))=F\left(x^{2}\right)$

- $\begin{aligned} \frac{d F}{d u}=\frac{d}{d u}\left[\int_{1}^{u} \cos (t) d t\right] & =\cos (u) \\ & =T C \text { Part } 1\end{aligned}$
- $\frac{d u}{d x}=\frac{d}{d x}\left(x^{2}\right)=2 x$

Chain Rule

$$
\text { - } \begin{aligned}
\frac{d y}{d x} & =\frac{d F}{d u} \cdot \frac{d u}{d x} \\
& =\cos (u) \cdot 2 x \\
& =\cos \left(x^{2}\right) 2 x
\end{aligned}
$$

In general,

$$
\frac{d}{d x}\left[\int_{a}^{u(x)} f(t) d t\right]=f(u(x)) \cdot \frac{d u}{d x}
$$

Similar Ex:
Use the Fundamental Tho Part 1 to find $\frac{d y}{d x}$ for $y=\int_{1}^{\sqrt{x}} \cos (t) d t$
Answer: \sqrt{x} note the upper limit of integration is not x - $y=\int_{1}^{\sqrt{x}} \cos (t) d t$ is a composition of two functions

$$
\begin{aligned}
& F(u)=\int_{1}^{u} \cos (t) d t \text { and } u(x)=\sqrt{x}: \\
& y(x)=F(u(x))=F(\sqrt{x}) \\
& \cdot \frac{d F}{d u}=\frac{d}{d u}\left[\int_{1}^{u} \cos (t) d t\right]=\cos (u) \\
& \text { FTC Part } 1
\end{aligned}
$$

$$
\theta \frac{d u}{d x}=\frac{d}{d x}(\sqrt{x})=\frac{d}{d x}\left(x^{\frac{1}{2}}\right)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2} \frac{1}{x^{\frac{1}{2}}}=\frac{1}{2 \sqrt{x}}
$$

Chain Rule

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d F}{d u} \cdot \frac{d u}{d x} \\
& =\cos (u) \cdot \frac{1}{2 \sqrt{x}} \\
& =\frac{\cos (\sqrt{x})}{2 \sqrt{x}}
\end{aligned}
$$

Another Ex (for FTC Part 1):
Find $\frac{d y}{d x}$ for $y=\int_{\tan (x)}^{0} \frac{1}{1+t^{2}} d t$
Answer:

$$
\int_{\tan (x)}^{0} \frac{1}{1+t^{2}} d t=-\int_{0}^{\tan (x)} \frac{1}{1+t^{2}} d t
$$

Rule 1 of definite integrals from Sec 5.3

$$
\int_{a}^{b} f(t) d t=-\int_{b}^{a} f(t) d t
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left[-\int_{0}^{\tan (x)} \frac{1}{1+t^{2}} d t\right] \\
&=-\frac{d}{d x}\left[\int_{0}^{\tan (x)} \frac{1}{1+t^{2}} d t\right] \quad \text { Here } f(u)=\frac{1}{1+u^{2}} \\
&=-\frac{1}{1+u^{2}} \cdot \frac{d u}{d x} \\
&=-\frac{1}{1+(\tan (x))^{2}} \cdot \frac{d}{d x}(x) \\
&\left.=-\frac{(\tan (x))}{1+(\sec (x))^{2}} \quad \operatorname{trig}(x)\right)^{2} \\
&=-\frac{\sin ^{2} x+\frac{\sec ^{2} x}{\cos ^{2} x}}{\cos ^{2} x} \\
& \sec ^{2}(x) \\
&=-1
\end{aligned}
$$

Fundamental Tho Part 2
Suppose f is continuous on $[a, b]$.
If F is an antiderivative of f on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Notation: write $\left.F(x)\right|_{a} ^{b}$ or $\left.F(x)\right]_{a}^{b}$ or $[F(x)]_{a}^{b}$ to mean $F(b)-F(a)$.

Remark: FTC Part 2 gives us a connection between definite integral $\int_{a}^{b} f(x) d x$ (limit of Riemann) and indefinite integral $\int f(x) d x$ (functions whose derivative $)$:

$$
\underbrace{\int_{a}^{b} f(x) d x}_{\text {finite integral }}=\underbrace{F(x)}_{\text {any anti }}]_{a}^{b}
$$

definite integral
any anti derivative (indefinite integral)
Ex (for FTC Part 2):

* $\quad \int_{1}^{4}\left(\frac{3}{2} \sqrt{x}-\frac{4}{x^{2}}\right) d x=\left[x^{3 / 2}+\frac{4}{x}\right]_{1}^{4}$

$$
\frac{d}{d x}\left(x^{3 / 2}+\frac{4}{x}\right)=\frac{3}{2} x^{1 / 2}-\frac{4}{x^{2}}
$$

$$
=\left[(4)^{3 / 2}+\frac{4}{4}\right]-\left[(1)^{3 / 2}+\frac{4}{1}\right]
$$

$$
=[8+1]-[5]=4
$$

$$
\begin{array}{rlrl}
* \quad \int_{0}^{1} \frac{d x}{x+1} & =\ln |x+1|]_{0}^{1} & & \frac{d}{d x} \ln |x+1|=\frac{1}{x+1} \\
& =\ln 2-\ln 1=\ln 2 & \\
* \quad \int_{0}^{1} \frac{d x}{x^{2}+1} & \left.=\tan ^{-1} x\right]_{0}^{1} & \frac{d}{d x} \tan ^{-1} x==\frac{1}{x^{2}+1} \\
& =\tan ^{-1} 1-\tan ^{-1} 0=\frac{\pi}{4}-0=\frac{\pi}{4} . &
\end{array}
$$

More Ex (for FTC Part 2):
Find the total area between the region $y=\sec (x) \tan (x)$ and the x-axis, between $x=-\frac{\pi}{4}$ and $x=\frac{\pi}{4}$.

Answer:

We put negative sign here because

$\sec x \tan x$ is below

$$
x \text {-axis on }\left[-\frac{\pi}{4}, 0\right]
$$

but we want
A_{1} to be positive

$$
\begin{aligned}
& A_{1}=-\int_{-\frac{\pi}{4}}^{0} \sec (x) \tan (x) d x=-[\sec x]_{-\frac{\pi}{4} \quad \text { of } \sec x \text { is an antideri }}^{0} \tan x \\
&=-\left[\sec (0)-\sec \left(-\frac{\pi}{4}\right)\right] \quad \sec (t)=\frac{1}{\cos (t)} \\
&=-\left[\frac{1}{\cos (0)}-\frac{1}{\cos \left(-\frac{\pi}{4}\right)}\right] \quad \sec \quad \sec \frac{\pi}{4}-\sec (0)=\sqrt{2}-1 \\
&=-\left[1-\frac{1}{\left(\frac{\sqrt{2}}{2}\right)}\right] \\
&=-1+\frac{2}{\sqrt{2}}=-1+\sqrt{2} \\
&\left.A_{2}=\int_{0}^{\frac{\pi}{4}} \sec x \tan x d x=\sec x\right]_{0}^{\frac{\pi}{4}} \quad
\end{aligned}
$$

$$
\text { Total area }=A_{1}+A_{2}=(\sqrt{2}-1)+(\sqrt{2}-1)=2 \sqrt{2}-2
$$

Displacement \& Distance Traveled Ex:

- A rock is blown straight up from the ground.

Velocity of the rock after t secs is $v(t)=160-32 t \mathrm{ft} / \mathrm{sec}$.

- Position of the rock after t secs is

$$
\int_{0}^{t} v(t) d t=\int_{0}^{t} 160-32 t f t
$$

- Total distance traveled after t secs is

$$
\int_{0}^{t}|v(t)| d t=\int_{0}^{t}|160-32| f t
$$

when the rock moves in the negative direction, we want to think of it as moving in the positive direction

- Q : Find the position of the rock after 8 secs

Ans:

$$
\begin{aligned}
\int_{0}^{8}(160-32 t) d t & =\left[160 t-\frac{32 t^{2}}{2}\right]_{0}^{8} \\
& =160(8)-\frac{32}{2}(8)-[0-0] \\
& =256 \mathrm{ft}
\end{aligned}
$$

- Q: Find total distance traveled after 8 secs.

Ans:

$$
\begin{aligned}
\int_{0}^{8}|v(t)| d t & =\int_{0}^{5}|v(t)| d t+\int_{5}^{8}|v(t)| d t \\
& =\int_{0}^{5}(160-32 t) d t-\int_{5}^{8}(160-32 t) d t \quad|v(t)|=-(160-32 t) \text { over }[5,8] \\
& =\left[160 t-16 t^{2}\right]_{0}^{5}-\left[160 t-16 t^{2}\right]_{5}^{8} \\
& =[(160)(5)-(16)(25)]-[(160)(8)-(16)(64)-((160)(5)-(16)(25))] \\
& =400-(-144)=544 . \mathrm{ft}
\end{aligned}
$$

