Recall from $\sec 5.2$
Riemann Sums

- A partition of an interval $[a, b]$
is a set of points $\quad x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$

dividing $[a, b]$ into n closed subintervals

$$
\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right]
$$

- The lengths of the subintervals are denoted

$$
\Delta x_{1}, \Delta x_{2}, \cdots, \Delta \Delta_{n-1}
$$

If all subintervals have equal width, their width is $\frac{b-a}{n}$. call this common width Δx.

- The norm $\|P\|$ of P is the largest of all the subinterval widths.

Ex: $\quad P=\{0, .2, .6,1,1.5,2\}$ is a partition of $[0,2]$.

Norm of P is $\|P\|=0.5$.

- For each subinterval $\left[x_{k-1}, x_{k}\right]$:
- we select some point c_{k} in $\left[x_{k-1}, x_{k}\right]$
- draw a rectangle from x-axis to $f\left(c_{k}\right)$
- Area of rectangle is $f\left(C_{E}\right) \Delta_{k}$

this is the \# of subintervals of the partition
-The sum $\sum_{k=1}^{5} f\left(c_{k}\right) \Delta x_{k}=$

$$
\begin{aligned}
& f\left(c_{1}\right) \Delta x_{1}+f\left(c_{2}\right) \Delta x_{2}+f\left(c_{3}\right) \Delta x_{3}+f\left(c_{4}\right) \Delta x_{4}+f\left(c_{5}\right) \Delta x_{5}= \\
& f(0) 0.2+f(0.5) 0.4+f(0.8) 0.4+f(1.2) 0.5+f(1.5) 0.5
\end{aligned}
$$

is an example of a Riemann sum for f on the interval $[a, b]=[0,2]$.

Sec 5.3 The Definite integral

- Let the norm $\|P\|$ approach 0 .
- If the Riemann sums of f on $[a, b]$. approach a number, this number is called the definite integral of f over $[a, b]$.
- If $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$ exists and $\|P\| \rightarrow 0 \quad k=1$ no matter what choices we make for partition equal a number J, P of $[a, b]$ the number J is called the definite integral of f from a to b,
upper limit of integration
denoted

$$
\int_{a_{k}}^{b} \overbrace{f(x)}^{\Delta_{\text {integrand }}} d x \text { exists }{ }^{x} \text { is variable of }
$$

Cower limit of integration
We also say:(1) "the Riemann sums of f on $[a, b]$ converge to $\mathrm{J}^{\prime \prime}$
(2) " f is integrable over $[a, b]$."

- Note: The definite integral depends on the f, not on our choice of letter.
Ex: $\quad \int_{a}^{b} f(t) d t$ is the same as $\int_{a}^{b} f(u) d u$.

If not all Riemann sums for f Converge to the same number J, we say f is not integrable.

- Tho: If f is continuous over $[a, b]$, then f is integrable over $[a, b]$
(i.e. the definite integral $\int_{a}^{b} f(x) d x$ exists)

Assume functions f, g are integrable over $[a, b]$.
1.) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x \quad\left(\begin{array}{ll}\text { when you } \\ \text { interchange } & a, b\end{array}\right)$
2.) $\int_{a}^{a} f(x) d x=0$
(The rest of the rules are theorems)
3.) $\int_{a}^{b} k f(x) d x=k \int_{\uparrow}^{b} f(x) d x$ for any number k "Constant Multiple Rule"
4.) $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
"Sum Rule"
5.) $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x$ if $a \leq c \leq b$

$$
\left(\begin{array}{c}
\text { maximumum } \\
\text { value of of } \\
\text { on } \\
\text { on } \\
{[a, b]}
\end{array}\right) \cdot(b-a)
$$

7.) If $f(x) \geqslant g(x)$ for all x in $[a, b]$,
then $\int_{a}^{b} f(x) d x \geqslant \int_{a}^{b} g(x) d x$.
Special case of Rule 6:
If $f(x) \geqslant 0$ for all x in $[a, b]$,
then $\int_{a}^{b} f(x) d x \geqslant 0$.
312
Chapter 5 Integrals

(a) Zero Width Interval:

$$
\int_{a}^{a} f(x) d x=0
$$

(d) Additivity for Definite Integrals:

$$
\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x
$$

(b) Constant Multiple: $(k=2)$

$$
\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x
$$

(e) Max-Min Inequality:

$$
\begin{aligned}
(\min f) \cdot(b-a) & \leq \int_{a}^{b} f(x) d x \\
& \leq(\max f) \cdot(b-a)
\end{aligned}
$$

(c) Sum: (areas add)

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

(f) Domination:

If $f(x) \geq g(x)$ on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

FIGURE 5.11 Geometric interpretations of Rules 2-7 in Table 5.6.

Like MML \#2,3,4

EXAMPLE 2 To illustrate some of the rules, we suppose that

$$
\int_{-1}^{1} f(x) d x=5, \quad \int_{1}^{4} f(x) d x=-2, \quad \text { and } \quad \int_{-1}^{1} h(x) d x=7
$$

Then

1. $\int_{4}^{1} f(x) d x=-\int_{1}^{4} f(x) d x=-(-2)=2$

Rule 1
2. $\int_{-1}^{1}[2 f(x)+3 h(x)] d x=2 \int_{-1}^{1} f(x) d x+3 \int_{-1}^{1} h(x) d x$

$$
=2(5)+3(7)=31
$$

3. $\int_{-1}^{4} f(x) d x=\int_{-1}^{1} f(x) d x+\int_{1}^{4} f(x) d x=5+(-2)=3 \quad$ Rule 5

Def If $f(x) \geqslant 0$ and integrable over $[a, b]$, then define the area under the curve $y=f(x)$ over $[a, b]$ to be the definite integral of f from a to b

$$
\text { Area }=\int_{a}^{b} f(x) d x
$$

Ex: Consider the definite integral $\int_{-3}^{3} \underbrace{(8-|x|)}_{6} d x$. the integrand $f(x)=8-|x|$

Graph $y=f(x)$ and use area formulas to evaluate the integral
Answer:

This area is (area of

$$
=
$$

$$
=
$$

$$
\begin{aligned}
& = \\
& =
\end{aligned}
$$

64 -25 $=\quad 39$

Ex: $\quad \int_{a}^{b} x d x=?$ if $a<b$

Total area is $\frac{(b-a)^{2}}{2}+a(b-a)$

$$
\begin{aligned}
& =\frac{b^{2}+a^{2}-2 a b}{2}+a b-a^{2} \\
& =\frac{b^{2}}{2}+\frac{a^{2}}{2}-a b+a b-a^{2} \frac{2}{2} \\
& =\frac{b^{2}}{2}-\frac{a^{2}}{2}
\end{aligned}
$$

Fact:

$$
\int_{a}^{b} x d x=\frac{b^{2}}{2}-\frac{a^{2}}{2} \text { if } a<b
$$

Ex: Graph the integrand \& use areas to evaluate the definite integral

$$
\int_{-2}^{2} \sqrt{4-x^{2}} d x
$$

Answer: $y^{2}+x^{2}=2^{2}$ is circle $w /$ radius 2 centered at the origin.
$y=\sqrt{4-x^{2}}$ is the upper semicircle

Area of the circle is $\pi(\text { radius })^{2}=\pi(2)^{2}=4 \pi$ Area of half the circle is 2π.

