Recall from Sec 5.2 Riemann Sums

· A partition of an interval [a, b] is a set of points Xo, X1, X2,..., Xn-1, Xn dividing [916] into n closed subintervals $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n].$ The lengths of the subintervals are denoted ΔX_1 , ΔX_2 , ..., Δ_{n-1} If all subintervals have equal width, their width is $\frac{b-a}{b}$. Call this common width &x. · The norm || P|| of P is the largest of all the subinterval widths. Ex: P = [0, .2, .6, 1, 1.5, 2] is a partition of [92]. $\Delta X_1 = .2$ $\Delta X_2 = .4$ $\Delta X_3 = .4$ $\Delta X_4 = .5$ ∆X5 = 22

Norm of P is ||P|| = 0.5.

Sec 5.3 The Definite integral
• Let the norm IPII approach 0.
• If the Riemann sums of f on [a,b].
approach a number, this number is called
the definite integral of f over [a,b].
• If
$$\lim_{x \to 0} \sum_{k=1}^{n} f(C_k) \Delta x_k$$
 exists and
IPII to $k=1$ no matter what choices
equal a number J, P of [a,b]
the number J is called
the definite integral of f from a to b,
upper limit of integration
denoted $\int_{a}^{b} f(x) dx^{a}$ exists integration
We also say: (1) " the Riemann sums of f on [a,b]
(2) "f is integral depends on the f,
not on our choice of letter.
 $[x: \int_{a}^{b} f(t) dt is the same as $\int_{a}^{t} f(u) du$.$

6)
$$\begin{pmatrix} \min n \operatorname{imum} \\ \operatorname{value of} (\alpha) \\ \operatorname{on} [\alpha, b] \end{pmatrix}$$
 $(b-a) \leq \int_{a}^{b} f(\alpha) dx \leq \begin{pmatrix} \max n \operatorname{um} \\ \operatorname{value of} (\alpha) \\ \operatorname{on} [\alpha, b] \end{pmatrix}$ $(b-a)$
on $[\alpha, b]$ $(b-a)$
 $(a, b]$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(b-a)$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(b-a)$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(b-a)$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(b-a)$
 $(b-a)$
 $(b-a)$
 $(a, b]$
 $(b-a)$
 $(b$

(a) Zero Width Interval:

$$\int_{a}^{a} f(x) \, dx = 0$$

(d) Additivity for Definite Integrals: $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$

(b) Constant Multiple: (k = 2) $\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$

(e) Max-Min Inequality: $(\min f) \cdot (b - a) \leq \int_{a}^{b} f(x) dx$ $\leq (\max f) \cdot (b - a)$

(c) Sum: (areas add) $\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$

(f) Domination: If $f(x) \ge g(x)$ on [a, b], then $\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx.$

FIGURE 5.11 Geometric interpretations of Rules 2–7 in Table 5.6.

like MML #2,3,4

EXAMPLE 2 To illustrate some of the rules, we suppose that

$$\int_{-1}^{1} f(x) \, dx = 5, \qquad \int_{1}^{4} f(x) \, dx = -2, \quad \text{and} \quad \int_{-1}^{1} h(x) \, dx = 7.$$

Then

1.
$$\int_{4}^{1} f(x) dx = -\int_{1}^{4} f(x) dx = -(-2) = 2$$
 Rule 1

2.
$$\int_{-1}^{1} [2f(x) + 3h(x)] dx = 2 \int_{-1}^{1} f(x) dx + 3 \int_{-1}^{1} h(x) dx$$
$$= 2(5) + 3(7) = 31$$

Rules 3 and 4

3.
$$\int_{-1}^{4} f(x) dx = \int_{-1}^{1} f(x) dx + \int_{1}^{4} f(x) dx = 5 + (-2) = 3$$
 Rule 5

Total area is
$$(b-a)^2$$
 + $a(b-a)$

$$= \frac{b^2 + a^2 - 2ab}{2} + ab - a^2$$

$$= \frac{b^{2}}{z} + \frac{a^{2}}{z} - ab + ab - a^{2} \frac{2}{z}$$
$$= \frac{b^{2}}{z} - \frac{a^{2}}{z}$$

Fact:

$$\int_{a}^{b} X \, dx = \frac{b^2}{2} - \frac{a^2}{2} \quad \text{if } a < b$$

EX: Graph the integrand & use areas to
evaluate the definite integral
$$\frac{2}{\sqrt{14-x^2}} dx$$

 $\frac{\text{Answer: } y^2 + x^2 = 2^2 \text{ is circle wy radius 2}}{\text{centered at the origin.}}$

Area of the circle is $\pi (radius)^2 = \pi (2)^2 = 4\pi$ Area of half the circle is 2π .