5.2 Sigma notation \& limits of finite sums

Greek letter Σ
Sum in sigma notation
meaning

$$
\begin{array}{ll}
\sum_{k=1}^{n} a_{k} & a_{1}+a_{2}+a_{3}+\ldots+a_{n} \\
\sum_{k=1}^{6} k^{2} & 1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2} \\
\sum_{k=2}^{5}(-1)^{k} k & \begin{aligned}
(-1)^{2} 2+(-1)^{3} 3+(-1)^{4} 4+(-1)^{5} 5 & =2-3+4-5 \\
\sum_{j=4}^{5} \frac{j^{2}}{j-1} & \frac{4^{2}}{4-1}+\frac{5^{2}}{5-1}=\frac{16}{3}+\frac{25}{4}=\frac{139}{12} \\
\sum_{i=-1}^{2} 7 f^{2}(i) & 7 f(-1)+7 f(0)+7 f(1)+7 f(2)
\end{aligned} \\
=7(f(-1)+f(0)+f(1)+f(2)) \\
& =7 \sum_{i=-1}^{2} 7 f(i) \\
& =7((-1+1+2)
\end{array}
$$

Ex: Express the sum $1+3+5+7+9$ in sigma notation.
Use 2 as the lower limit of summation and k for the index of summation.

Answer look for a pattern.
Observe that to go to the next term we always add +2

$$
\begin{aligned}
& a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
& 1 \begin{array}{cc}
(1+2) & (1+2+2)
\end{array}(1+2+2+2) \quad\binom{1+2+2+2+2}{1+2(4)} \\
& 1+2(0) \quad 1+2(1) \quad 1+2(2) \quad 1+2(3) \quad 1+2(4) \\
& \begin{array}{cccc}
1+2(2-2) & 1+2(3-2) & 1+2(4-2) & 1+2(5-2) \\
k & \uparrow & \uparrow & \uparrow \\
k & k & k
\end{array} \\
& 1+2(6-2) \\
& \begin{array}{l}
\text { 个 } \\
k
\end{array} \\
& \sum_{k=2}^{6} 1+2(k-2) \text { or } \sum_{k=2}^{6} 1+2 k-4 \text { or } \sum_{k=2}^{6} 2 k-3
\end{aligned}
$$

Ex: Express the sum $-\frac{5}{3}+\frac{5}{9}-\frac{5}{27}+\frac{5}{81}$ in sigma notation.
Use 2 as the lower limit of summation and
j for the index of summation.
Answer look for a pattern.

Ex: Express $-\frac{1}{26}+\frac{1}{27}-\frac{1}{28}+\frac{1}{29}-\frac{1}{30}$ in sigma notation.
Use 25 as the lower limit and i for the index.

Algebra Rules for finite sums

$$
\begin{aligned}
\sum_{k=1}^{3}\left(k+k^{2}\right) & =\left(1+1^{2}\right)+\left(2+2^{2}\right)+\left(3+3^{2}\right) \\
& =(1+2+3)+\left(1^{2}+2^{2}+3^{2}\right) \\
& =\sum_{k=1}^{3} k+\sum_{k=1}^{3} k^{2}
\end{aligned}
$$

Regroup terms

In general,

$$
\begin{aligned}
& \sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k} \\
& \sum_{k=1}^{n} c a_{k}=c \sum_{k=1}^{n} a_{k}
\end{aligned}
$$

Sum Rule

Constant Multiple Rule

$$
\text { Ex: If } \sum_{k=2}^{100} a_{k}=4 \text { and } \sum_{k=2}^{100} b_{k}=24, \text { find } \ldots
$$

1.)

$$
\begin{aligned}
\sum_{k=1}^{100} \frac{b_{k}}{24} & =\frac{1}{24} \sum_{k=1}^{100} b_{k} \\
& =\frac{1}{24}(24) \\
& =1
\end{aligned}
$$

2.$)$

$$
\begin{aligned}
\sum_{k=2}^{100} b_{k}-3 a_{k} & =\sum_{k=2}^{100} b_{k}+(-3) \sum_{k=2}^{100} a_{k} \\
& =24+(-3) 4 \\
& =12
\end{aligned}
$$

Riemann Sums

- A partition of an interval $[a, b]$
is a set of points $\quad x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ $b^{\prime \prime}$
dividing $[a, b]$ into n closed subintervals

$$
\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right] .
$$

- The lengths of the subintervals are denoted

$$
\Delta x_{1}, \Delta x_{2}, \cdots, \Delta \Delta_{n-1}
$$

If all subintervals have equal width, their width is $\frac{b-a}{n}$. call this common width Δx.

- The norm $\|P\|$ of P is the largest of all the subinterval widths.

Ex: $\quad P=\{0, .2, .6,1,1.5,2\}$ is a partition of $[0,2]$.

Norm of P is $\|P\|=0.5$.

- For each subinterval $\left[x_{k-1}, x_{k}\right]$:
- we select some point c_{k} in $\left[x_{k-1}, x_{k}\right]$
- draw a rectangle from x-axis to $f\left(c_{k}\right)$
- Area of rectangle is $f\left(C_{k}\right) \Delta_{k}$

this is the \# of subintervals of the partition
-The sum $\sum_{k=1}^{5} f\left(c_{k}\right) \Delta x_{k}=$

$$
\begin{aligned}
& f\left(c_{1}\right) \Delta x_{1}+f\left(c_{2}\right) \Delta x_{2}+f\left(c_{3}\right) \Delta x_{3}+f\left(c_{4}\right) \Delta x_{4}+f\left(c_{5}\right) \Delta x_{5}= \\
& f(0) 0.2+f(0.5) 0.4+f(0.8) 0.4+f(1.2) 0.5+f(1.5) 0.5
\end{aligned}
$$

is an example of a Riemann sum for f on the interval $[a, b]=[0,2]$.

Next time (Sec 5.3 The Definite integral):

- Let the norm $\|P\|$ approach 0 .
- If the Riemann sums of f on $[a, b]$. approach a number, this number is called the definite integral of f over $[a, b]$.

