Ch 5 Integrals Big Ideas:
There are simple formulas for calculating lengths, areas \& volumes of straight line segments, triangles, spheres, cones.

For more general curves \& shapes, we use
a powerful tool called the definite integral
(defined to be a limit of increasingly fine approximations).

Sec 5.1 Area \& Estimating with Finite sums

Examples of applications:
Approximate (1) area under a curve
(2) distance traveled
(3) average value of a function
(1) Area

Ex: Consider the region R

$$
\text { below } y=1-x^{2}
$$

above the x-axis, \&
between $x=0$ and $x=1$

FIGURE 5.1 The area of the shaded region R cannot be found by a simple formula.

- There is no simple formula for computing the area of R, but we can estimate it using areas of rectangles.
- In general, the region R is below $y=f(x)$, above the x-axis, \& between the vertical lines $x=a$ and $x=b$.

Partition / subdivide the interval $[a, b]=[0,1]$ into, say, $n=4$ subintervals of equal width/ length, $\Delta x=\frac{b-a}{n}=\frac{1}{4}$ $\Delta x=\frac{1}{4}$

$(n=4)$

- Total area of the 4 rectangles:

$$
\begin{aligned}
1 \cdot \frac{1}{4}+\frac{15}{16} \cdot \frac{1}{4}+\frac{3}{4} \cdot \frac{1}{4}+\frac{7}{16} \cdot \frac{1}{4} & =\frac{25}{32} \\
& =0.78125
\end{aligned}
$$

- The height of each rectangle is the maximum (upper most) value of $f(x)=1-x^{2}$ in each subinterval.
- So $\frac{25}{32}$ is an upper sum

- Total area of rectangles: min value of $f(x)$ in 2 nd subinterval

$$
\begin{aligned}
\frac{15}{16} \cdot \frac{1}{4}+\frac{3}{4} \cdot \frac{1}{4}+\frac{7}{16} \cdot \frac{1}{4} & +0 \cdot \frac{1}{4}=\frac{17}{32} \\
& =0.53125
\end{aligned}
$$

. Height of each rectangle is the minimum (lower most) value of $f(x)=1-x^{2}$ in each subinterval.

- So $\frac{17}{32}$ is a lower sum
* (upper sum) $0.78125>($ Exact area of region $R)>\begin{gathered}(\text { lower sum }) \\ 0.53125\end{gathered}$
* The error cannot be bigger than (upper sum) $-($ lower sum) $=0.25$
- The midpoint rule is using the value of $f(x)$ at the midpoint of each subinterval (for the height of the rectangles).

- Total area of $n=4$ rectangles:

$$
\frac{63}{64} \cdot \frac{1}{4}+\frac{55}{64} \cdot \frac{1}{4}+\frac{39}{64} \cdot \frac{1}{4}+\frac{15}{64} \cdot \frac{1}{4}=0.671875
$$

"midpoint" value
of $f(x)$ in and subinterval

- With the midpoint rule, we cannot be sure if the approximation is bigger/smaller than the actual.
- As we take more rectangles (thinner subintervals), we get better \& better approximations of the area of R.

$$
\Delta x=\frac{b-a}{16}=\frac{1}{16}
$$

upper sum using $n=16$

$$
0.634765625
$$

lower sum using $n=16$
0.697265625

- Taking greater \& greater n, the sums seem to approach $\frac{2}{3}$.
(2) Distance Traveled

Ex: The velocity of an object fired straight into the air is $f(t)=160-9.8 t \mathrm{~m} / \mathrm{sec}$. Estimate the distance traveled by the object (how far it rises) during the first 3 sec , using $n=3$ subintervals and left-endpoint values.

Answer:

- Our time interval is $[a, b]=[0,3]$.
- Partition it into $n=3$ subintervals of equal width:

$$
\begin{aligned}
& \Delta t=\frac{a-b}{n}=\frac{3-0}{3}=1 \\
& \left.\sum_{a=0} \quad 1 \quad \begin{array}{lll}
\text { Left-endpoint } \\
\text { for end subinterval }
\end{array}\right]
\end{aligned}
$$

- For each subinterval, use the distance formula distance traveled $=$ constant velocity \times time
- Approximation of distance traveled is

$$
\begin{aligned}
& f(0) \cdot \Delta x+f(1) \cdot \Delta x+f(2) \cdot \Delta x= \\
& (160-0) 1+(160-9.8) 1+(160-9.8(2)) 1= \\
& 450.6 \mathrm{~m}
\end{aligned}
$$

(3) Average value of a nonnegative continuous function.

- Average value of a collection of numbers $x_{1}, x_{2}, \ldots, x_{n}$ is $\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}$.
- What is the average value of a continuous function f on an interval $[a, b]$?
E.g. What does it mean to say "average temperature in Lowell today is 70 degrees"?

If the function is constant on the interval $[a, b]$, $f(x)=c$ for x in $[a, b]$,
(e.9. $f(x)=5$ for x in $[2,6]$)
then the average is C.

- Graph of $f(x)$ over $[a, b]$ is a rectangle:

- We can interpret this average as

$$
\frac{(\text { area of rectangle })}{(\text { width of rectangle })}=\frac{c(b-a)}{b-a}=c
$$

If the function is non constant
$\varepsilon-g$.

Think of this graph as some water sloshing around in a tank between enclosing walls at $x=a$ \& $x=b$.

To get the average height of the water, let it settle down until its height is constant. . Height $=\frac{\text { area under the graph of } g(x)}{b-a}$

- So define aVERAGE VALUE of a nonnegative function on an interval $[a, b]$ to be
area under its graph

$$
b-a
$$

Ex: Estimate the average value of $f(x)=\sin x$ on the interval $[0, \pi]$ by partitioning the interval into $n=8$ subintervals of equal length and using an upper sum.
Answer:

Because $f(x)$ is increasing on $\left[0, \frac{\pi}{2}\right]$, we use the right endpoints to compute height of rectangle

- Width of each subinterval is $\Delta x=\frac{b-a}{n}=\frac{\pi-0}{8}=\frac{\pi}{8}$
- Upper sum approximation of the area is:

$$
\sin \left(\frac{\pi}{8}\right) \cdot \frac{\pi}{8}+\sin \left(\frac{\pi}{4}\right) \cdot \frac{\pi}{8}+\sin \left(\frac{3 \pi}{8}\right) \cdot \frac{\pi}{8}+\sin \left(\frac{\pi}{2}\right) \cdot \frac{\pi}{8}
$$

total area of the first 4 rectangles

$$
+\underbrace{\sin \left(\frac{\pi}{2}\right) \cdot \frac{\pi}{8}+\sin \left(\frac{5 \pi}{8}\right) \cdot \frac{\pi}{8}+\sin \left(\frac{3 \pi}{4}\right) \cdot \frac{\pi}{8}+\sin \left(\frac{7 \pi}{8}\right) \frac{\pi}{8}}_{\text {Last } 4 \text { rectangles }} \approx 2.364
$$

- Estimated average value of $f(x)=\sin x$ on $[0, \pi]$ is $\frac{2.364}{\pi-0}$
- This estimate is greater than actual average.
- As we increase the number of rectangles, the estimate gets close to $\frac{2}{\pi}$.

