Idea: recover a function from its derivative Given a function f, find a function F whose derivative is f.

DEFINITIONS A function F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

Ex: Find an antiderivative for...
a.) $\quad f(x)=2 x$

Think backward. What function do we know has a derivative equal to $2 x$?
How about $x^{2}, \quad x^{2}+5, x^{2}-100$?
Check: The derivative of each of these is $2 x$
b.) $g(x)=-\sin (x)$
$G(x)=\cos (x)$ is an antiderivative of $g(x)=-\sin (x)$.
So is $\cos (x)-47, \cos (x)+60$, etc

THEOREM 8 If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$
F(x)+C
$$

where C is an arbitrary constant.

This is a family of functions
They all have identical derivative, the function f.

* Review differentiation rules from Chapter 3
* Review $\operatorname{Sec} 3.3$
- For any real number n except -1 ,

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \text { or } \frac{d}{d x}(\underbrace{\left.\frac{1}{n} x^{n}\right)=\frac{1}{n} n x^{n-1}=x^{n-1} . . . ~}
$$

an antiderivative
*our original function

Ex: $f(x)=x^{5}$

General antiderivative of $f(x)$ is $F(x)=\frac{1}{6} x^{6}+C$

$$
E x: \quad g(x)=\frac{1}{\sqrt{x}}=x^{-\frac{1}{2}}
$$

General antiderivative of $g(x)$ is $G(x)=\frac{1}{\left(\frac{1}{2}\right)} x^{-\frac{1}{2}+1}+C$

$$
\begin{aligned}
& =2 x^{\frac{1}{2}}+C \\
& =2 \sqrt{x}+C
\end{aligned}
$$

* Review Sec 3.3 \& 3.8

- For any positive a except for 1 ,

$$
\begin{aligned}
\frac{d}{d x}\left(a^{x}\right) & =\frac{d}{d x}\left(e^{\ln \left(a^{x}\right)}\right) \\
& =\frac{d}{d x}\left(e^{x \ln (a)}\right) \text { Here } \overbrace{\ln (a)}^{\text {nonzero because } a \neq 1} \text { the role of } k \text { in } e^{k x} \\
& =\ln (a) e^{x \ln (a)} \\
& =\ln (a) a^{x}
\end{aligned}
$$

an antiderivative
Ex: $f(x)=2^{x}$
General antiderivative of $f(x)$ is $F(x)=\frac{1}{\ln (2)} 2^{x}+C \quad$ Here $a=2$

* Review Sec 3.5

For any nonzero k,

$$
\begin{array}{ll}
\frac{d}{d x}(\sin k x)=k \cos x & \frac{d}{d x}(\cos k x)=-\sin k x \\
\frac{d}{d x}(\tan (k x))=(\sec k x)^{2} k & \frac{d}{d x}(\cot (k x))=-(\csc (k x))^{2} k \\
\frac{d}{d x}(\sec (k x))=\sec (k x) \tan (k x) k & \frac{d}{d x}(\csc (k x))=-\csc (k x) \cot (k x) k \\
E x: & f(x)=\cos \left(\frac{1}{2} x\right) \quad \text { Here } k=\frac{1}{2} \quad \begin{array}{l}
\sin \left(\frac{1}{2} x\right) \\
\left(\frac{1}{2}\right)
\end{array} C=2 \sin \left(\frac{x}{2}\right)+C
\end{array}
$$

TABLE 4.2 Antiderivative formulas, \boldsymbol{k} a nonzero constant

Function	General antiderivative	Function	General antiderivative
1. x^{n}	$\frac{1}{n+1} x^{n+1}+C, n \neq-1$	8. $e^{k x}$	$\frac{1}{k} e^{k x}+C$
2. $\sin k x$	$-\frac{1}{k} \cos k x+C$	9. $\frac{1}{x}$	$\ln \|x\|+C, x \neq 0$
3. $\cos k x$	$\frac{1}{k} \sin k x+C$	10. $\frac{1}{\sqrt{1-k^{2} x^{2}}}$	$\frac{1}{k} \sin ^{-1} k x+C$
4. $\sec ^{2} k x$	$\frac{1}{k} \tan k x+C$	11. $\frac{1}{1+k^{2} x^{2}}$	$\frac{1}{k} \tan ^{-1} k x+C$
5. $\csc ^{2} k x$	$-\frac{1}{k} \cot k x+C$	12. $\frac{1}{x \sqrt{k^{2} x^{2}-1}}$	$\sec ^{-1} k x+C, k x>1$
6. $\sec k x \tan k x$	$\frac{1}{k} \sec k x+C$	13. $a^{k x}$	$\left(\frac{1}{k \ln a}\right) a^{k x}+C, a>0, a \neq 1$
7. $\csc k x \cot k x$	$-\frac{1}{k} \operatorname{sc} k x+C$		

- Recall: Derivatives are linear
- Antiderivatives are also linear:

FACT
If $F(x)$ is an antiderivative of $f(x)$ and $G(x)$ is an antiderivative of $g(x)$, then

1. $k F(x)+C$ is the general antiderivative of $k f(x)$ for any number k ("constant multiple rule")
2. $F(x)+G(x)+C$ is the general antiderivative of $f(x)+g(x)$ ("sum rule")

$$
E_{x}: \quad f(x)=\frac{3}{\sqrt{x}}+\cos \left(\frac{1}{2} x\right)
$$

Earlier we computed general antiderivatives of

$$
\frac{1}{\sqrt{x}} \text { and } \cos \left(\frac{1}{2} x\right)
$$

Using the fact that antiderivatives are linear, we get that the general antiderivative of $f(x)$ is

$$
\begin{aligned}
& 3(2 \sqrt{x})+2 \sin \left(\frac{x}{2}\right)+C \\
& 6 \sqrt{x}+2 \sin \left(\frac{x}{2}\right)+C
\end{aligned}
$$

DEFINITION The collection of all antiderivatives of f is called the indefinite integral of f with respect to x; it is denoted by

$$
\begin{aligned}
& \text { denoted by } \\
& \int \underbrace{f(x)}_{\text {integrand }} d x \text { is the variable of } \\
& \text { integration }
\end{aligned}
$$

The symbol \int is an integral sign The function f is the integrand of the integral, and x is the variable of integration.

Ex: Evaluate $\int\left(\frac{1}{x}+2 e^{2 x}\right) d x$
Answer: This is the same as asking "Given a function $f(x)=\frac{1}{x}+2 e^{2 x}$, find the most general antiderivative of $f(x)$."

- It's enough to find one antiderivative and add an arbitrary constant C.

Review Sec 3.8

- Check: $\frac{d}{d x}(\ln |x|) \stackrel{\downarrow}{=} \frac{1}{x}, \quad \frac{d}{d x}\left(e^{2 x}\right)=2 e^{2 x}$
- So $\ln |x|+e^{2 x}$ is an antiderivative of $f(x)$.
- So

$$
\int\left(\frac{1}{x}+2 e^{2 x}\right) d x=\overbrace{\ln |x|+e^{2 x}}^{\text {an antiderivative }}+\underbrace{C}_{\text {arbitrary constant }}
$$

