Idea: recover a function from its derivative Given a function f, find a function F whose derivative is f.

DEFINITIONS A function F is an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Ex: Find an antiderivative for ... a.) f(x) = 2xThink backward. What function do we know has a derivative equal to 2x? How about x^2 , $x^2 + 5$, $x^2 - 100$? Check: The derivative of each of these is 2xb.) $g(x) = -\sin(x)$ $G(x) = \cos(x)$ is an antiderivative of $g(x) = -\sin(x)$. So is $\cos(x) - 47$, $\cos(x) + 60$, etc

THEOREM 8 If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

F(x) + C

where C is an arbitrary constant.

★ Review Sec 3.3 • For any real number n except -1, $\frac{d}{dx}(x^{n}) = n x^{n-1} \text{ or } \frac{d}{dx}\left(\frac{1}{n}x^{n}\right) = \frac{1}{n}n x^{n-1} = x^{n-1}$ $ext{ our original}$ $Ex: f(x) = x^{5}$ $General \quad antiderivative \quad of \quad f(x) \quad is \quad F(x) = \frac{1}{6}x^{6} + C$ $Ex: \quad g(x) = \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$ $General \quad antiderivative \quad of \quad g(x) \quad is \quad G(x) = \frac{1}{(\frac{1}{2})}x^{-\frac{1}{2}+1} + C$ $= 2 x^{\frac{1}{2}} + C$

* Review Sec 3.3 * 3.8 • For any nonzero k, $\frac{d}{dx}(e^{kx}) = k e^{kx}$ or $\frac{d}{dx}(\frac{i}{k}e^{kx}) = \frac{i}{k}ke^{kx} = e^{kx}$ original an antiderivative function • For any positive a except for 1, nonzero because a≠1 $\frac{d}{dx}(a^{\times}) = \frac{d}{dx}(e^{\ln(a^{\times})})$ $= \frac{d}{dx} \left(e^{x} \ln(a) \right)$ Here $\ln(a)$ plays the role of k in e^{kx} = ln(a) $e^{x \ln(a)}$ = In (a) a^x or $\frac{d}{dx}\left(\frac{1}{\ln(a)}a^{x}\right) = \frac{1}{\ln(a)}\ln(a)a^{x} = \frac{a^{x}}{\operatorname{original}}$ function an anfiderivative Ex: f (x) = 2^x General antiderivative of f(x) is $F(x) = \frac{1}{\ln(2)} e^{x} + C$ Here a=2

$$f(x) = \cos\left(\frac{1}{2}x\right) \quad \text{Here } k = \frac{1}{2}$$
General antiderivative of $f(x)$ is $F(x) = \frac{\sin\left(\frac{1}{2}x\right)}{\left(\frac{1}{2}\right)} + C = 2 \sin\left(\frac{x}{2}\right) + C$

TABLE 4.2 Antiderivative formulas, k a nonzero constant

Function	General antiderivative	Function	General antiderivative
1. <i>xⁿ</i>	$\frac{1}{n+1}x^{n+1} + C, n \neq -1$	8. <i>e</i> ^{kx}	$\frac{1}{k}e^{kx} + C$
$2. \sin kx$	$-\frac{1}{k}\cos kx + C$	9. $\frac{1}{x}$	$\ln x + C, x \neq 0$
$3. \cos kx$	$\frac{1}{k}\sin kx + C$	10. $\frac{1}{\sqrt{1-k^2x^2}}$	$\frac{1}{k}\sin^{-1}kx + C$
4. $\sec^2 kx$	$\frac{1}{k} \tan kx + C$	11. $\frac{1}{1+k^2x^2}$	$\frac{1}{k}\tan^{-1}kx + C$
5. $\csc^2 kx$	$-\frac{1}{k}\cot kx + C$	12. $\frac{1}{x\sqrt{k^2x^2-1}}$	$\sec^{-1}kx + C, kx > 1$
$6. \sec kx \tan kx$	$\frac{1}{k} \sec kx + C$	13. a^{kx}	$\left(\frac{1}{k\ln a}\right)a^{kx} + C, a > 0, a \neq 1$
7. $\csc kx \cot kx$	$-\frac{1}{k}\csc kx + C$		

- · Recall: Derivatives are linear
- · Antiderivatives are also linear :

FACT

If F(x) is an antiderivative of f(x) and G(x) is an antiderivative of g(x),

then

Ex:
$$f(x) = \frac{3}{Jx} + \cos\left(\frac{1}{2}x\right)$$

Earlier we computed general antiderivatives of
 $\frac{1}{Jx}$ and $\cos\left(\frac{1}{2}x\right)$.
Using the fact that antiderivatives are linear,
we get that the general antiderivative of $f(x)$ is

$$3(2\sqrt{x}) + 2 \sin(\frac{x}{2}) + C$$

$$6\sqrt{x} + 2 \sin(\frac{x}{2}) + C$$

Indefinite Integrals

A special symbol is used to denote the collection of all antiderivatives of a function f.

DEFINITION The collection of all antiderivatives of f is called the **indefinite integral** of f with respect to x; it is denoted by $\int f(x) dx$. The symbol \int is an **integral sign** The function f is the **integrand** of the integral, and x is the **variable of integral sign**.

Ex: Evaluate
$$\int \left(\frac{1}{x} + 2e^{2x}\right) dx$$

Answer: This is the same as asking
"Given a function $f(x) = \frac{1}{x} + 2e^{2x}$,
find the most general antiderivative of $f(x)$."
It's enough to find one antiderivative and
add an arbitrary constant C.
Review Sec 3.8
Check: $\frac{1}{4x}(\ln|x|) \stackrel{i}{=} \frac{1}{x}$, $\frac{d}{dx}(e^{2x}) = 2e^{2x}$
So $\ln|x| + e^{2x}$ is an antiderivative of $f(x)$.

• So

$$\int \left(\frac{1}{x} + 2e^{2x}\right) dx = \frac{an \text{ antiderivative}}{\ln|x| + e^{2x} + C}$$
arbitrary constant

0