

FIGURE 10.28 Three tests for symmetry in polar coordinates.

The slope of a polar curve in the xy-plane
The slope of a polar curve
$$r = f(\theta)$$

in the xy-plane is $\frac{dy}{dx}$. This is not $\frac{df}{d\theta}$.
we can think of this curve as the graph of
"parametric equations":
 $x(\theta) = r \cos \theta = f(\theta) \cos \theta$ and $y(\theta) = r \sin \theta = f(\theta) \sin \theta$
from because
Sec 10.3 $r = f(\theta)$
Chain Rule
 $\frac{dy}{d\theta} = \frac{dy}{dx} \frac{dx}{d\theta}$ for short
 $\frac{dy}{d\theta} = \frac{dy}{dx} \frac{dx}{d\theta}$ for short
 $\frac{dy}{d\theta} = \frac{dy}{dx} \frac{dx}{d\theta}$

ðΥ

$$\frac{dy}{dx} = \frac{\frac{d}{d\theta} \left(f(\theta) \sin \theta \right)}{\frac{d}{d\theta} \left(f(\theta) \cos \theta \right)} = \frac{f'(\theta) \sin \theta + f(\theta) \cos \theta}{f'(\theta) \cos \theta - f(\theta) \sin \theta}$$

The slope of a polar curve in the xy-plane
The slope of a polar curve
$$r = f(\theta)$$

in the xy-plane is $\frac{dy}{dx}$. This is not $\frac{df}{d\theta}$.
we can think of this curve as the graph of
"parametric equations":
 $x(\theta) = r \cos \theta = f(\theta) \cos \theta$ and $y(\theta) = r \sin \theta = f(\theta) \sin \theta$
from because
Sec 10.3 $r = f(\theta)$
Chain Rule
 $\frac{dy}{d\theta} = \frac{dy}{dx} \frac{dx}{d\theta}$ for short
 $\frac{dy}{d\theta} = \frac{dy}{d\theta} \frac{dx}{d\theta}$.
Ex:
Find the slope of the tangent line of
the curve $r = 1 + \sin \theta$ at the point $\theta = \frac{\pi}{3}$.
Solution $x = r\cos \theta = (1 + \sin \theta) \sin \theta = \sin \theta + \sin^2 \theta$
The metapote

Then we have

Εx

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\cos\theta + 2\sin\theta\,\cos\theta}{-\sin\theta + \cos2\theta} = \frac{\cos\theta + \sin2\theta}{-\sin\theta + \cos2\theta}$$

The slope of the tangent at the point where $\theta = \pi/3$ is

$$\frac{dy}{dx}\Big|_{\theta=\frac{\pi}{3}} = \frac{\cos\left(\frac{\pi}{3}\right) + \sin\left(\frac{2\pi}{3}\right)}{-\sin\left(\frac{\pi}{3}\right) + \cos\left(\frac{2\pi}{3}\right)} = \frac{\frac{1}{2} + \frac{\sqrt{3}}{2}}{-\frac{\sqrt{3}}{2} - \frac{1}{2}} = -1$$

Graphing in Polar Coordinates

: اەك

Sketch the polar equation $r = 1 + \sin \theta$.

 $r = 1 + \sin \theta$ in Cartesian coordinates, $0 \le \theta \le 2\pi$

Stages in sketching the cardioid $r = 1 + \sin \theta$

Note: This curve is symmetric about the y-axis

The graph of a polar equation $r = f(\theta)$ consists of all points *P* that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Exercise Sketch the following polar equations.

The graph of a polar equation $r = f(\theta)$ consists of all points *P* that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Exercise (Answer Key) Sketch the following polar equations.

