10.4 Graphing polar coordinate equations

(a) About the x-axis

(b) About the y-axis

(c) About the origin

Symmetry Tests for Polar Graphs in the Cartesian $x y$-Plane

1. Symmetry about the x-axis: If the point (r, θ) lies on the graph, then the point $(r,-\theta)$ or $(-r, \pi-\theta)$ lies on the graph (Figure 10.28a).
2. Symmetry about the y-axis: If the point (r, θ) lies on the graph, then the point $(r, \pi-\theta)$ or $(-r,-\theta)$ lies on the graph (Figure 10.28b).
3. Symmetry about the origin: If the point (r, θ) lies on the graph, then the point $(-r, \theta)$ or $(r, \theta+\pi)$ lies on the graph (Figure 10.28c).

FIGURE 10.28 Three tests for symmetry in polar coordinates.

The slope of a polar curve in the $x y$-plane
The slope of a polar curve $r=f(\theta)$ in the $x y$-plane is $\frac{d y}{d x}$. This is not $\frac{d f}{d \theta}$.
we can think of this curve as the graph of "parametric equations":
$x(\theta)=r \cos \theta=f(\theta) \cos \theta$ and $y(\theta)=r \sin \theta=f(\theta) \sin \theta$
from

$$
\uparrow
$$

Sec 10.3
because

$$
r=f(\theta)
$$

$$
\begin{array}{r}
\frac{d}{d \theta} y(x(\theta)) \stackrel{d y}{=} \frac{d y}{d x} \frac{d x(\theta)}{d \theta} \text { or } \frac{d y}{d \theta}=\frac{d y}{d x} \frac{d x}{d \theta} \text { for short } \\
\\
\text { Then } \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}
\end{array}
$$ $\begin{array}{ll}\text { From } & \text { because } \\ \text { Sec } 10.3 & r=f(\theta)\end{array}$

or

$$
\frac{d y}{d x}=\frac{\frac{d}{d \theta}(f(\theta) \sin \theta)}{\frac{d}{d \theta}(f(\theta) \cos \theta)}=\frac{f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta}
$$

The slope of a polar curve in the $x y$-plane
The slope of a polar curve $r=f(\theta)$ in the $x y$-plane is $\frac{d y}{d x}$. This is not $\frac{d f}{d \theta}$.

We can think of this curve as the graph of "parametric equations":

$$
x(\theta)=r \cos \theta=f(\theta) \cos \theta \text { and } y(\theta)=r \sin \theta=f(\theta) \sin \theta
$$

$$
\begin{array}{cc}
\uparrow & \uparrow \\
\text { from } & \text { because }
\end{array}
$$

from because $\sec 10.3 \quad r=f(\theta)$
Sec 10.3

$$
r=f(\theta)
$$

$$
\operatorname{Sec} 10.3 \quad r=f(\theta)
$$

Chain Rule

$$
\frac{d}{d \theta} y(x(\theta)) \stackrel{d y}{=} \frac{d x}{d x} \frac{d x(\theta)}{d \theta} \text { or } \frac{d y}{d \theta}=\frac{d y}{d x} \frac{d x}{d \theta} \text { for short }
$$

$$
\text { Then } \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}
$$

Ex:
Find the slope of the tangent line of the curve $r=1+\sin \theta$ at the point $\theta=\frac{\pi}{3}$

Solution

$$
\begin{aligned}
& \operatorname{Sec} 10.3 \\
& x=r \cos \theta \\
& y=r \sin \theta=(1+\sin \theta) \cos \theta=\cos \theta+\frac{1}{2} \sin 2 \theta \\
&(1+\sin \theta) \sin \theta=\sin \theta+\sin ^{2} \theta
\end{aligned}
$$

Then we have

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\cos \theta+2 \sin \theta \cos \theta}{-\sin \theta+\cos 2 \theta}=\frac{\cos \theta+\sin 2 \theta}{-\sin \theta+\cos 2 \theta}
$$

The slope of the tangent at the point where $\theta=\pi / 3$ is

$$
\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{3}}=\frac{\cos \left(\frac{\pi}{3}\right)+\sin \left(\frac{2 \pi}{3}\right)}{-\sin \left(\frac{\pi}{3}\right)+\cos \left(\frac{2 \pi}{3}\right)}=\frac{\frac{1}{2}+\frac{\sqrt{3}}{2}}{-\frac{\sqrt{3}}{2}-\frac{1}{2}}=-1
$$

Graphing in Polar Coordinates
Example Sketch the polar equation $r=1+\sin \theta$.
Sol:

$r=1+\sin \theta$ in Cartesian coordinates, $0 \leqslant \theta \leqslant 2 \pi$

(a)

(b)

(c)

(d)

(e)

Stages in sketching the cardioid $r=1+\sin \theta$

Note: This curve is symmetric about the y-axis

The graph of a polar equation $r=f(\theta)$ consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Exercise Sketch the following polar equations.

(a) $\quad r=4$

(c) $\quad r=4 \cos \theta$

(b) $\quad \theta=\frac{\pi}{6}$

(d) $\quad r=4 \sin \theta$

The graph of a polar equation $r=f(\theta)$ consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Exercise (Answer Key) Sketch the following polar equations.

(a)
$r=4$
(b)
$\theta=\frac{\pi}{6}$

(c)
(d)

$$
r=4 \sin \theta
$$

$$
r=2+2 \sin \theta
$$ Cardioid

(e)

$$
r=4 \cos 2 \theta
$$

Four-leaved Rose

Example Sketch the curve $r=4 \cos (2 \theta)$
Sol:

In Cartesian coordinates $r(\theta)=4 \cos (2 \theta)$

Actual curve:

