Polar Coordinates

(In Multivariable Calculus: polar coordinates \rightarrow cylindrical and spherical coordinates in 3D)
Instead of using horizontal distance and vertical distance from the axes, we use the distance from the origin (radius) as well as the corresponding angle to express a given point.

- The origin is called the pole.
- The positive x-axis is called the polar axis.
- The polar coordinates for a point P have the form (r, θ), where \ldots
- $\quad r$ is the distance from the origin to P, and
- $\quad \theta$ is an angle starting from the positive x-axis and ending on the ray that passes through the pole and the point P. polar axis
- Positive angles are measured counterclockwise from the positive x-axis.

The origin is specified as $(0, \theta)$ in polar coordinates, where θ is any angle.

$$
\begin{aligned}
& \cos (\pi+\theta)=-\cos (\theta) \\
& \sin (\pi+\theta)=-\sin (\theta)
\end{aligned}
$$

$$
5 \frac{\pi}{4}=\pi+\frac{\pi}{4}
$$

Find other representations for the same point

Graph the point $\left(1, \frac{5 \pi}{4}\right)$ in polar coordinates. Give tor alternative representations for the point.
four

$$
\frac{-\sqrt{2}}{2}=\frac{\cos \left(\frac{5 \pi}{4}\right) \underbrace{\theta=\pi+\frac{\pi}{4}}_{-\frac{\sqrt{2}}{2}=\sin \left(\frac{5 \pi}{4}\right)}}{} \quad\left(1, \frac{5 \pi}{4}+2 \pi\right),\left(1, \frac{5 \pi}{4}-2 \pi\right)
$$

Converting Between Cartesian and Polar Coordinates

Procedure Converting Coordinates
A point with polar coordinates (r, θ) has Cartesian coordinates (x, y), where

$$
x=\binom{\text { horizontal }}{\text { distance }}=r \cos \theta, \quad y=\binom{\text { vertical }}{\text { distance }}=r \sin \theta
$$

A point with Cartesian coordinates (x, y) has polar coordinates (r, θ), where

$$
\begin{aligned}
& r=\binom{\text { distance }}{\text { from pole }}=\sqrt{x^{2}+y^{2}}, \tan (\theta)=\frac{y}{x} \\
& \text { or } r^{2}=x^{2}+y^{2}
\end{aligned}
$$

Polar to Cartesian
Polar to Cartesian
Express the point with polar coordinates $\binom{r}{\left.2, \frac{3 \pi}{4}\right)}$ in Cartesian coordinates.
$x=r \cos \theta=2 \cos \frac{3 \pi}{4}=-\sqrt{2}$
$y=r \sin \theta=2 \sin \frac{3 \pi}{4}=\sqrt{2}$
Answer: $(-\sqrt{2}, \sqrt{2})$
Cartesian to polar

Express the point with Cartesian coordinates $(1,-1)$ in polar coordinates.
$r=\sqrt{x^{2}+y^{2}}=\sqrt{1+1}=\sqrt{2}$
$\theta=-\frac{\pi}{4}$ or $-\frac{\pi}{4}+2 n \pi$
(from picture or compute $\theta=\arctan \left(\frac{-1}{1}\right)=-\frac{\pi}{4}$)

Converting Between Cartesian and Polar Equations

A curve in polar coordinates is the set of points that satisfy an equation in r and θ. Some sets of points are easier to describe in polar coordinates than in Cartesian coordinates.

Examples:
The set of all points with distance 3 from the pole,
angle θ
polar equation $r=3$

$$
\text { Also } r=-3
$$

polar equation $\theta=\frac{\pi}{4}$
Also $\theta=\frac{5 \pi}{4}$

polar equation $r=\theta$
A circle or a line can have more than one polar equation!
polar equation?
(Graph with Desmos: https://www.desmos.com/calculator/j6ha36k9zi)

Polar to Cartesian

Convert the polar equation $r=8 \sin \theta$ to a Cartesian equation.
page 2: $x=r \cos \theta, y=r \sin \theta \Leftrightarrow \frac{y}{r}=\sin \theta$
Plug in $\frac{y}{r}=\sin \theta$ into $r=8 \sin \theta: \quad r=8 \frac{y}{r} \Longleftrightarrow r^{2}=8 y$ page 2: $r^{2}=x^{2}+y^{2}$
Plug in $r^{2}=x^{2}+y^{2}$ into $r^{2}=8 y$:

Polar to Cartesian
Convert the polar equation $r \cos \theta=-4$ to a Cartesian equation.
page 2: $x=r \cos \theta$
Plug in $x=r \cos \theta$ into $r \cos \theta=-4: x=-4$

Cartesian to polar equation
Convert the Cartesian equation $x^{2}\left(x^{2}+y^{2}\right)=4 y^{2}$ to a polar equation.
page 2: $r^{2}=x^{2}+y^{2}$
Plug into $x^{2}\left(x^{2}+y^{2}\right)=4 y^{2}: x^{2} r^{2}=4 y^{2}$
page 2: $x=r \cos \theta, y=r \sin \theta$
Plug into $x^{2} r^{2}=4 y^{2}: r^{2}(\cos \theta)^{2} r^{2}=4 r^{2}(\sin \theta)^{2}$

$$
r^{2}=4(\tan \theta)^{2}
$$

$$
r=2 \tan \theta
$$

EXAMPLE 4 Here are some plane curves expressed in terms of both polar coordinate and Cartesian coordinate equations.

Polar equation	Cartesian equivalent
$r \cos \theta=2$	$x=2$
$r^{2} \cos \theta \sin \theta=4$	$x y=4$
$r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta=1$	$x^{2}-y^{2}=1$
$r=1+2 r \cos \theta$	$y^{2}-3 x^{2}-4 x-1=0$
$r=1-\cos \theta$	$x^{4}+y^{4}+2 x^{2} y^{2}+2 x^{3}+2 x y^{2}-y^{2}=0$

Some curves are more simply expressed with polar coordinates; others are not.

Example: Find a polar equation for the circle

$$
x^{2}+(y-3)^{2}=9
$$

Sol:

$$
\begin{aligned}
x^{2}+(y-3)^{2} & =9 & & \\
x^{2}+y^{2}-6 y+9 & =9 & & \text { Expand }(y-3)^{2} . \\
x^{2}+y^{2}-6 y & =0 & & \text { Cancelation } \\
r^{2}-6 r \sin \theta & =0 & & x^{2}+y^{2}=r^{2}, y=r \sin \theta \\
r=0 \quad \text { or } \quad r-6 \sin \theta & =0 & & \\
r & =6 \sin \theta & & \text { Includes both possibilities }
\end{aligned}
$$

Additional examples going between polar \& cartesian

EXAMPLE 6 Replace the following polar equations by equivalent Cartesian aquatrons and identify their graphs.
(a) $r \cos \theta=-4$
(b) $r^{2}=4 r \cos \theta$
(c) $r=\frac{4}{2 \cos \theta-\sin \theta}$

Solution We use the substitutions $r \cos \theta=x, r \sin \theta=y$, and $r^{2}=x^{2}+y^{2}$.
(a) $r \cos \theta=-4$

The Cartesian equation: $\quad r \cos \theta=-4$

$$
x=-4 \quad \text { Substitute. }
$$

The graph: Vertical line through $x=-4$ on the x-axis
(b) $r^{2}=4 r \cos \theta$

The Cartesian equation: $\quad r^{2}=4 r \cos \theta$

$$
\begin{array}{ll}
x^{2}+y^{2}=4 x & \text { Substitute. } \\
x^{2}-4 x+y^{2}=0 & \\
x^{2}-4 x+4+y^{2}=4 & \text { Complete the square. } \\
(x-2)^{2}+y^{2}=4 & \text { Factor. }
\end{array}
$$

The graph: \quad Circle, radius 2, center $(h, k)=(2,0)$
(c) $r=\frac{4}{2 \cos \theta-\sin \theta}$

The Cartesian equation: $\quad r(2 \cos \theta-\sin \theta)=4$

$$
2 r \cos \theta-r \sin \theta=4 \quad \text { Multiply by } r .
$$

$$
2 x-y=4 \quad \text { Substitute. }
$$

$$
y=2 x-4 \quad \text { Solve for } y
$$

The graph: \quad Line, slope $m=2, y$-intercept $b=-4$

Defining regions, segments, rays

EXAMPLE 3 Graph the sets of points whose polar coordinates satisfy the following conditions.
(a) $1 \leq r \leq 2 \quad$ and $\quad 0 \leq \theta \leq \frac{\pi}{2}$
(b) $-3 \leq r \leq 2 \quad$ and $\quad \theta=\frac{\pi}{4}$
(c) $\frac{2 \pi}{3} \leq \theta \leq \frac{5 \pi}{6} \quad$ (no restriction on r)

Sol:
(a)

(b)

(c)

