Quiz 2 Study Guide Math 2924 Fall 2022

Graphs and limits for exponential and logarithmic functions (see pg 422-425 of the textbook Sec 6.3)

1. Practice graphing problems like Webwork 6.3 problems $5,23,24$
2. Evaluate $\lim _{x \rightarrow \infty} \ln (x)$ and evaluate $\lim _{x \rightarrow 0^{+}} \ln (x)$
3. Sketch $y=\ln (x)$
4. Evaluate $\lim _{x \rightarrow \infty} \log _{b}(x)$ for $b>1$ and evaluate $\lim _{x \rightarrow 0^{+}} \log _{b}(x)$ for $b>1$
5. Sketch $y=\log _{b}(x)$ for $b \geq 1$
6. Sketch $y=b^{x}$ for $b>1$, like $y=4^{x}$ or $y=e^{x}$
7. Sketch $y=b^{x}$ for $b<1$, like $y=(0.8)^{x}$
8. Sketch $y=1^{x}$ (this is the same as $y=1$)
9. Be able to shift graphs up, down, to the right, to the left, like in textbook Sec 6.3 Example 8 and Webwork 6.3 Problems 23, 24.

Differentiate using natural log (see pg 428-432 of the textbook Sec 6.4)

1. Memorize the formula for the derivative of $\ln (x)$ (pg. 428)
2. Use chain rule and the above formula to compute derivatives of functions similar to textbook Sec 6.4 Examples $1,2,3,4$:

$$
\frac{d}{d x} \ln \left(x^{3}+1\right), \quad \frac{d}{d x} \ln (\sin x), \quad \frac{d}{d x} \sqrt{\ln x}, \quad \frac{d}{d x} \ln \left(\frac{x+1}{\sqrt{x-2}}\right)
$$

3. After you differentiate, use the derivative to compute the slope of the tangent line at a specific point (like Webwork 6.4 Problem 3)
4. Use chain rule to differentiate functions similar to in Webwork 6.4 Problems 2, 3, 5

Integrate using natural log (see pg 431-432 of the textbook Sec 6.4)

1. Memorize the integration formula for $\int \frac{1}{x} d x$ (pg. 431)
2. Use u-substitution and the above formula to compute integrals like textbook Sec 6.4 Examples 9, 10, 11:

$$
\int \frac{x}{x^{2}+1} d x, \quad \int \frac{\ln x}{x} d x, \quad \int \tan x d x
$$

3. Webwork 6.4 Problems 8, 9, 10, 18

Note:

- The quiz will be at the beginning of class. Know your ID number, since you will need to write it on the quiz paper.
- Bring pens/pencils
- Blank scratch paper will be provided. Calculators are not permitted and are not needed (no simplification is needed).

