7.8 Improper Integrals (Type 1) 191

An application (Source: Textbook Sec 5.4 Exercise 31)
Work required to move a rocket from the surface of earth
to another point t meters (from the center of earth) is

$$\int_{R}^{t} G m M \frac{1}{x^2} dx$$
 in joule or newton-meter,
R
where G is a constant in newton meters² (Called gravitational
 kg^2 (Called gravitational),
m is the mass in kg of the rocket,
M is the mass in kg of earth,
R is the radius of earth.

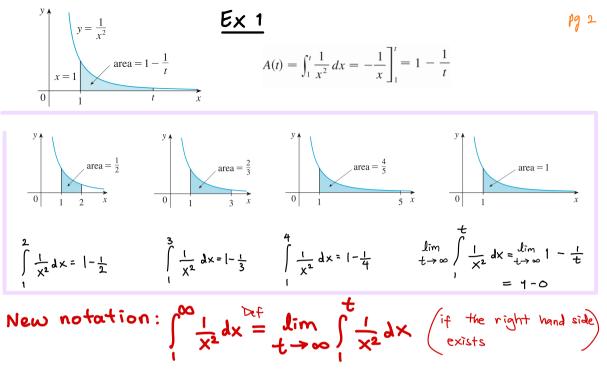
Evaluate :

$$G_{m}M\int_{R}^{t} x^{-2} dx = G_{m}M\frac{x^{-1}}{-1}\Big|_{R}^{t} = G_{m}M\left(-\frac{1}{t}+\frac{1}{R}\right)$$

The work required to free the rocket from earth's gravity pull

is
$$\lim_{t \to \infty} \int_{R}^{t} \frac{GmM}{x^{2}} dx = \lim_{t \to \infty} GmM \left(-\frac{\iota}{t} + \frac{\iota}{R} \right) = GmM \left(\frac{1}{R} \right)$$

Vocab: this concept is called an improper integral,
even when the limit does not exist



1 Definition of an Improper Integral of Type 1

(a) If $\int_{a}^{t} f(x) dx$ exists for every number $t \ge a$, then

$$\int_{a}^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \, dx$$

provided this limit exists (as a finite number).

(b) If $\int_{t}^{b} f(x) dx$ exists for every number $t \le b$, then

$$\int_{-\infty}^{b} f(x) \, dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) \, dx$$

provided this limit exists (as a finite number).

The improper integrals $\int_a^{\infty} f(x) dx$ and $\int_{-\infty}^{b} f(x) dx$ are called **convergent** if the corresponding limit exists and **divergent** if the limit does not exist.

• We say
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 is CONVERGENT because $\lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2} dx$ equals a number.
• $\int_{1}^{1} \frac{1}{x} dx = \ln |x| \Big|_{x=t}^{x=-1} = \ln |t| - \ln |t| = -\ln |t|$
Ex 2
So $\lim_{t \to -\infty} \int_{t}^{-1} \frac{1}{x} dx = \lim_{t \to -\infty} -\ln |t| = -\infty$ so $\int_{-\infty}^{-1} \frac{1}{x} dx$ is DIVERGENT

Example:
$$\int_{1}^{\infty} \frac{1}{x^2} dx = \lim_{x \to \infty} \int_{1}^{x} \frac{1}{x^2} dx$$

since the RHS is equal to a number

1 Definition of an Improper Integral of Type 1

(c) If both
$$\int_{a}^{\infty} f(x) dx$$
 and $\int_{-\infty}^{a} f(x) dx$ are convergent, then we define

$$\int_{-\infty}^{\infty} f(x) dx \stackrel{def}{=} \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$
any number

$$\int_{-\infty}^{\infty} f(x) dx \stackrel{def}{=} \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$
will result
in the Same
number
Warning · If $\int_{a}^{\infty} f(\omega) dx$ or $\int_{-\infty}^{a} f(\omega) dx$ is divergent,
then we say $\int_{-\infty}^{\infty} f(\omega) dx$ and $\int_{a}^{a} f(\omega) dx$ must be convergent
for $\int_{-\infty}^{\infty} f(\omega) dx$ and $\int_{a}^{a} f(\omega) dx$ must be convergent.
Evaluate $\int_{-\infty}^{\infty} \frac{1}{1 + x^{2}} dx$. Ex 3

$$\int_{0}^{t} \frac{1}{1 + x^{2}} dx = \arctan(x) \int_{0}^{t} = \arctan(t) - \arctan(t)$$

$$\lim_{t \to \infty} \int_{0}^{t} \frac{1}{1 + x^{2}} dx = \frac{\dim}{t - \pi} \arctan(t) = \frac{\pi}{2}$$

$$\int_{0}^{t} \frac{1}{1 + x^{2}} dx = \arctan(x) \int_{0}^{t} = \arctan(t) - \arctan(t)$$

$$\lim_{t \to \infty} \int_{0}^{t} \frac{1}{1 + x^{2}} dx = \lim_{t \to -\infty} -\arctan(t) = -\left(\frac{\pi}{2}\right) - \frac{\pi}{2}$$

$$\int_{0}^{\infty} \frac{1}{1 + x^{2}} dx = \int_{0}^{\infty} \frac{1}{1 + x^{2}} dx + \int_{0}^{0} \frac{1}{1 + x^{2}} dx = \frac{\pi}{2} + \frac{\pi}{2}$$

$$\int_{-\infty}^{\infty} \frac{1}{1 + x^{2}} dx = \int_{0}^{\infty} \frac{1}{1 + x^{2}} dx + \int_{0}^{0} \frac{1}{1 + x^{2}} dx = \frac{\pi}{2} + \frac{\pi}{2}$$

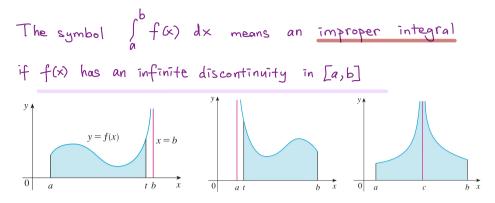
$$\int_{0}^{\infty} \frac{1}{1 + x^{2}} dx = \int_{0}^{\infty} \frac{1}{1 + x^{2}} dx + \int_{0}^{0} \frac{1}{1 + x^{2}} dx = \frac{\pi}{2} + \frac{\pi}{2}$$

$$\int_{-\infty}^{\infty} \frac{1}{1 + x^{2}} dx = \int_{0}^{\infty} \frac{1}{1 + x^{2}} dx + \int_{0}^{0} \frac{1}{1 + x^{2}} dx = \pi = \pi$$

 \overrightarrow{x}

0

7.8 Improper Integrals (Type 2)



3 Definition of an Improper Integral of Type 2

(a) If f is continuous on [a, b) and is discontinuous at b, then

$$\int_a^b f(x) \, dx = \lim_{t \to b^-} \int_a^t f(x) \, dx$$

if this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

$$\int_{a}^{b} f(x) \, dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) \, dx$$

if this limit exists (as a finite number).

The improper integral $\int_{a}^{b} f(x) dx$ is called **convergent** if the corresponding line exists and **divergent** if the limit does not exist.

whether it's improper integral by checking

Find
$$\int_{2}^{5} \frac{1}{\sqrt{x-2}} dx$$
 Ex 4
Because $\lim_{x \to 2^{+}} \frac{1}{\sqrt{x-2}} = \infty$, the function $\frac{1}{\sqrt{x-2}}$ has an infinite
discontinuity in [2,5], so the symbol $\int_{2}^{5} \frac{1}{\sqrt{x-2}} dx$ means improper integral.
 $\int_{1}^{5} \frac{1}{\sqrt{x-2}} dx = \int_{1}^{5} (x-2)^{\frac{1}{2}} dx = \frac{(x-2)^{\frac{1}{2}}}{(\frac{1}{2})} \int_{1}^{5} = 2(\sqrt{5-2} - \sqrt{t-2})$ (Example
 $\lim_{t \to 2^{+}} \int_{t}^{5} \frac{1}{\sqrt{x-2}} = \lim_{t \to 2^{+}} 2(\sqrt{3} - \sqrt{t-2}) = 2\sqrt{3}$
So $\int_{2}^{5} \frac{1}{\sqrt{x-2}} = 2\sqrt{3}$, so it is CONVERGENT.
 $\int_{2}^{5} \frac{1}{\sqrt{x-2}} dx = 2\sqrt{3}$, so it is CONVERGENT.

3 Definition of an Improper Integral of Type 2

(c) If *f* has a discontinuity at *c*, where a < c < b, and both $\int_a^c f(x) dx$ and $\int_a^b f(x) dx$ are convergent, then we define

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
If one of $\int_{a}^{c} f(x) dx$ or

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
Evaluate $\int_{0}^{3} \frac{dx}{x-1}$ if possible **Exs**
WARNING WRONG COMPUTATION WARNING

$$\int_{a}^{3} \frac{1}{x-1} dx = \ln |x-11| \int_{0}^{b} = \ln(2) - \ln(1) = \ln(2)$$
Improper integrals are not integrals
Because $\lim_{x \to 1^{+}} \frac{1}{x-1} = \infty$ and $\lim_{x \to 1^{-}} \frac{1}{x-1} = -\infty$
the function $\frac{1}{x-1}$ has an infinite discortinuity at $x=1$,
so the symbol $\int_{0}^{3} \frac{1}{x-1} dx$ means improper integral.
Need to check the convergence / divergence of
 $\int_{1}^{3} \frac{1}{x-1} dx = \ln |x-11| \int_{0}^{b} = \ln |t-1| - \ln |t-1| = \ln |t-1| - \ln(1)$
 $\int_{0}^{3} \frac{1}{x-1} dx = \frac{1}{x-1} dx$ separately.
 $\int_{0}^{3} \frac{1}{x-1} dx = \frac{1}{x} \int_{0}^{1} \frac{1}{x-1} dx$ separately.
 $\int_{0}^{3} \frac{1}{x-1} dx = -\infty$, and we call $\int_{0}^{1} \frac{1}{x-1} dx$ divergent.
Without even checking $\int_{0}^{3} \frac{1}{x-1} dx$, we can say $\int_{0}^{3} \frac{1}{x-1} dx$ is divergent.

Pg 6 Comparison Thm for Improper Integrals $|F \quad o \leq f(x) \leq g(x) \quad for \quad x \geqslant a \quad and \quad \int_{a}^{\infty} g(x) \, dx \quad is \quad convergent,$ THEN $\int_{a}^{\infty} f(x) dx$ is convergent "bigger" $|F \quad o \leq f(x) \leq g(x) \quad for \quad x \geqslant a \quad and \quad \int_{a}^{\infty} f(x) \, dx = \infty ,$ THEN $\int_{\alpha}^{\infty} g(x) dx = \infty$ (Vocab: We say $\int_{\alpha}^{\infty} f(x) dx$ is divergent) "bigger" vocab: We say [gk) dx is divergent Determine whether $\int_{1}^{\infty} \frac{1+e^{-x}}{x} dx$ is convergent. **Ex 6** (Note: $\int \frac{1+e^{-x}}{x} dx$ cannot be expressed as an elementary function, so we cannot evaluate it until we get to Sec 11.9-11.10) <u>Answer</u> $0 \le \frac{1}{x} \le \frac{1+e^{-x}}{x}$ for $x \ge 1$ $\int_{1}^{\infty} \frac{1}{x} dx \stackrel{\text{Def}}{=} \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to \infty} \ln|x| \Big|_{1}^{t} = \lim_{t \to \infty} \ln|t| - \ln(1) = \infty$ · By the Comparison Thm for Improper Integrals, $\int_{-\infty}^{\infty} \frac{1 + e^{-x}}{x} dx = \infty$ so it is not convergent. (Another word for "not convergent" is divergent.)