Section $6.8 \quad$ Indeterminate Forms l'Hospital's Rule

Read before / after class:
Textbook Examples

$$
\begin{array}{lll}
1,5,6, & 9 \\
\text { "oi" } & \text { "0.⿱")}
\end{array} \begin{aligned}
& \text { "indeterminate } \\
& \text { power" } \\
& \text { compute } \\
& \text { directly }
\end{aligned} 0^{0} \text { or } \infty^{\circ} \text { or } 1^{\infty}
$$

Strategies:
(1) "응" or " $\frac{\infty}{\infty}$ " \Rightarrow I'Hospitals Rule
(2) $\left.\begin{array}{c}" \infty-\infty " \\ " 0, \infty^{\prime \prime}\end{array}\right\} \Rightarrow$ Turn into "0" or ${ }^{\prime \infty} \infty^{\prime \prime}$
 to get "oㅇ" or "os"

Review Sec 1.6 Limit Laws
Limit Laws Suppose that c is a constant and the limits

$$
\lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x)
$$

exist. Then

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$

Law \#5 doesn't work when
the limit of the denominator is 0

Example

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{1-\sin x}{\cos x}=?
$$

- $\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} 1-\sin x=1-\sin \left(\frac{\pi}{2}\right)=1-1=0$

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)} \cos x=\cos \frac{\pi}{2}=0
$$

called an indeterminate form of type "응"

- If $\underbrace{(1-\sin x)}_{\text {numerator }}$ goes to 0 faster, the answer is 0
- If $\underbrace{\cos x}_{\text {denominator }}$ goes to 0 faster, the answer is ∞
- If there is a compromise, the answer is a nonzero number
l'Hospital's Rule "O"

Rule "응"
L'Hospital's Rule Suppose f and g are differentiable and $g^{\prime}(x) \neq 0$ on an open interval I that contains a (except possibly at a). Suppose that

$$
\lim _{x \rightarrow a} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=0
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the limit on the right side exists (or is ∞ or $-\infty$).
The rule works if we replace $\lim _{x \rightarrow a}$ with

$$
\lim _{x \rightarrow a^{+}} \lim _{x \rightarrow a^{-}} \lim _{x \rightarrow \infty} \text { or } \lim _{x \rightarrow-\infty}
$$

Example: Evaluate $\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{1-\sin x}{\cos x}$
Solution:

$$
\left.\begin{array}{l}
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} 1-\sin x=0 \\
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)} \cos x=0
\end{array}\right\} \begin{aligned}
& \text { so we } \\
& \text { san attempt } \\
& \text { to apply } \\
& \begin{array}{l}
\text { I'Hospital's } \\
\text { Rule "O"" }
\end{array}
\end{aligned}
$$

Here $f(x)=1-\sin x$

$$
g(x)=\cos x
$$

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{1-\sin x}{\cos x}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}}^{\frac{d}{d x}(1-\sin x)} \frac{\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}-\sin x}(\cos x)}{}=\frac{-\cos x \rightarrow\left(\frac{\pi}{2}\right)^{-} \cos x}{\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \sin x}=\frac{\cos \left(\frac{\pi}{2}\right)}{\sin \left(\frac{\pi}{2}\right)}=\frac{0}{1}=0
$$

By l'Hospital's
Rule "Oㅇ"

Practice I'Hospital's Rule "응":
Textbook Example 1, 4
Webwork 5, 6
Recommended Khan Academy "0" Practice

I'Hospital's Rule

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=?
$$

$$
\left.\lim _{x \rightarrow \infty} \ln x=\infty, \begin{array}{l}
x \rightarrow \infty \\
\lim _{x \rightarrow \infty} \sqrt{x}=\infty
\end{array}\right\} \begin{aligned}
& \text { If } \ln x \text { wins, ? } \sqrt{x} \text { is } \sqrt{x} \text { wins, ? is } 0 \\
& \text {. If there is a compromise, }
\end{aligned}
$$

$\lim _{x \rightarrow \infty} \sqrt{x}=\infty$. If there is a compromise, ? is a positive number

Rule " ∞ "
L'Hospital's Rule Suppose f and g are differentiable and $g^{\prime}(x) \neq 0$ on an open interval I that contains a (except possibly at a). Suppose that

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the limit on the right side exists (or is ∞ or $-\infty$).
The rule works if we replace $\lim _{x \rightarrow a}$ with

$$
\lim _{x \rightarrow a^{+}} \lim _{x \rightarrow a^{-}} \lim _{x \rightarrow \infty} \text { or } \lim _{x \rightarrow-\infty}
$$

- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is called an
indeterminate form of type " ∞ "

Next
Apply this I'Hospital's Rule " ∞ " to the above situation with

$$
\begin{aligned}
& f(x)=\ln x \\
& g(x)=\sqrt{x}
\end{aligned}
$$

l'Hospital's Rule " $\frac{\infty}{\infty}$ "

Example: $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=$?

$$
\lim _{x \rightarrow \infty} \sqrt{x}=\infty
$$

(from prev. slide)

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(\ln x)}{\frac{d}{d x}\left(x^{\frac{1}{2}}\right)}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{2} x^{-\frac{1}{2}}\right)}=\lim _{x \rightarrow \infty} \frac{1}{x} 2 x^{\frac{1}{2}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0
$$

So \sqrt{x} wins,
due to Hospital's
Rule " $\frac{\infty}{\infty}$ "
it grows much faster than $\ln x$, as expected because power funs grow faster than $\ln (x)$

Indeterminate Differences
EXAMPLE 8 Compute $\lim _{x \rightarrow(\pi / 2)-}(\sec x-\tan x)$

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{1}{\cos x}=+\infty \text { and } \lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \tan x=+\infty
$$

- If $\sec (x)$ wins, the answer is ∞

- If they compromise, the answer is a number
a function

$$
\begin{aligned}
& \text { Strategy: Convert this difference into a quotient another function } \\
& \left.\begin{array}{l}
\sec (x)-\tan (x)=\frac{1}{\cos (x)}-\frac{\sin (x)}{\cos (x)}=\frac{1-\sin (x)}{\cos (x)} \\
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} 1-\sin (x)=0 \\
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \cos (x)=0
\end{array}\right\} \begin{array}{l}
\text { so we can try to } \\
\text { use L'Hospital's } \\
\text { Rule } \frac{\text { "O " }}{0}
\end{array}
\end{aligned}
$$

Indeterminate Differences
General strategy
If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$
and we want to compute $\lim _{x \rightarrow a} f(x)-g(x) \ldots$
EXAMPLE 8 Compute $\lim _{x \rightarrow(\pi / 2)^{-}}(\sec x-\tan x)$

$$
\begin{aligned}
& \lim _{x \rightarrow(\pi / 2)^{-}}(\sec x-\tan x)= \lim _{x \rightarrow(\pi / 2)^{-}}\left(\frac{1}{\cos x}-\frac{\sin x}{\cos x}\right) \quad \begin{array}{l}
\text { First, turn into } \\
\text { a quotient }
\end{array} \\
&=\lim _{x \rightarrow(\pi / 2)^{-}} \frac{1-\sin x}{\cos x}-\lim _{x \rightarrow(\pi / 2)^{-}} \frac{-\cos x}{-\sin x}=0 \quad \begin{array}{l}
\text { Next, try to } \\
\text { apply } 1 \text { It } \\
\text { Rule " } 10^{\prime \prime}
\end{array} \\
& \text { R or " } \infty^{\prime \prime}
\end{aligned}
$$

Note that the use of l'Hospital's Rule is justified because $1-\sin x \rightarrow 0$ and $\cos x \rightarrow 0$ as $x \rightarrow(\pi / 2)^{-}$.

Webwork Prob 7: Evaluate $\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln (x)$

First, try writing $\frac{\sqrt{x}}{\left(\frac{1}{\ln x}\right)}$

WARNING
The following statement is FALSE If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=\infty$, then $\lim _{x \rightarrow a} f(x) g(x)=0$
FALSE!
$\left.\lim _{x \rightarrow 0^{+}} \sqrt{x}=0\right\}$ So we can attempt to use $\left.\lim _{x \rightarrow 0^{+}} \frac{1}{\ln x}=0\right\}$ L'Hospital's Rule "O"

$$
\frac{\sqrt{x}}{(1 / \ln x)} \frac{\frac{d}{d x} \sqrt{x}}{\frac{d}{d x}\left(\frac{1}{\ln x}\right)} \quad \frac{\frac{1}{2} x^{-\frac{1}{2}}}{-\frac{1}{(\ln x)^{2}} \cdot \frac{1}{x}} \quad \begin{aligned}
& -\frac{1}{2} \sqrt{x}(\ln x)^{2}
\end{aligned} \begin{aligned}
& \text { More complicated than } \\
& \text { the expression } \\
& \text { we started with. }
\end{aligned}
$$

Next: try the other quotient

Webwork Prob 7: Evaluate $\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln (x)$

$$
\left.\begin{array}{ll}
\lim _{x \rightarrow 0^{+}} \sqrt{x}=0 & -\sqrt{x} \\
\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty & \frac{\ln ^{\ln x} x}{\sqrt{-}}
\end{array}\right\}
$$

Turn $\sqrt{x} \ln (x)$ into a quotient by writing $\frac{\sqrt{x}}{\left(\frac{1}{\ln x}\right)}$ OR $\frac{\ln (x)}{\left(\frac{1}{\sqrt{x}}\right)}$

So try writing as $\frac{\ln (x)}{\left(\frac{1}{\sqrt{x}}\right)}$

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\left(x^{-\frac{1}{2}}\right)}=\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x} \ln (x)}{\frac{d}{d x}\left(x^{-\frac{1}{2}}\right)}=\lim _{x \rightarrow 0^{+}} \frac{\left(\frac{1}{x}\right)}{-\frac{1}{2} x^{-\frac{3}{2}}}=\lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{\left(-\frac{1}{2}\right) x^{-\frac{3}{2}}}=\lim _{x \rightarrow 0^{+}}-2 x^{\frac{3}{2}-1}=\lim _{x \rightarrow 0^{+}}-2 x^{\frac{1}{2}}=0
$$

(so \sqrt{x} wins!)

Practice other "Indeterminate Products"

- Textbook, Example 6
- Textbook, Example 7

EXAMPLE 5 Find $\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos x}$.

EXAMPLE 5 Find $\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos x}$.

Solution:

$$
\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos x}=\frac{\sin \pi}{1-\cos \pi}=\frac{0}{1-(-1)}=0
$$

- $\sin (x)$ is continuous at $x=\pi$
- $1-\cos (x)$ is continuous at $x=\pi$

Type "00", " ∞ "", "1 ∞ "
Indeterminate Powers
Several indeterminate forms arise from the limit

$$
\lim _{x \rightarrow a}[f(x)]^{g(x)}
$$

1. $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0 \quad$ type 0^{0}
2. $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=0 \quad$ type ∞^{0}
3. $\lim _{x \rightarrow a} f(x)=1$ and $\lim _{x \rightarrow a} g(x)= \pm \infty \quad$ type 1^{∞}

Strategy for all:
Apply \ln

$$
\begin{aligned}
y & =[f(x)]^{(g(x))} \\
\ln y & =\ln \left[(f(x))^{g(x)}\right] \\
\ln y & =g(x) \ln (f(x))
\end{aligned}
$$

$\lim _{x \rightarrow a} \ln y$ will now be an indeterminate form of type $\frac{10 \text { " }}{0}$ or " $\frac{\infty}{\infty}$ "

Indeterminate power Example

Example:

Answer:

$$
\begin{aligned}
& \text { suer: } \\
& \left.\qquad \lim _{x \rightarrow 0^{+}}(1+x)=1\right\} \text { Type "1 } 1^{\infty} \text { " } \\
& \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty \\
& y=(1+x)^{\frac{1}{x}} \\
& \ln y=\ln \left((1+x)^{\frac{1}{x}}\right)
\end{aligned}
$$

$$
\ln y=\underbrace{\frac{1}{x} \ln (1+x)}
$$

Now, work with $\frac{\ln (1+x)}{x}$

$$
\left.\begin{array}{l}
\lim _{x \rightarrow 0^{+}} \ln (1+x)=0 \\
\lim _{x \rightarrow 0^{+}} x=0
\end{array}\right\} \quad \text { Try } I^{\prime} \text { H Rule }
$$

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}[\ln (1+x)]}{\frac{d}{d x}(x)}=\lim _{x \rightarrow 0^{+}} \frac{\left(\frac{1}{1+x}\right)}{1}=1
$$

by I'H Rule "응"
so $\lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0^{+}} e^{(\ln y)}=e^{\left(\lim _{x \rightarrow 0^{+}} \ln y\right)}=e^{1}=e$
Practice similar question: $\lim _{x \rightarrow \infty}\left(\frac{1}{x}+1\right)^{x}=$?
Hint: The answer is Not 1
Try $\lim _{x \rightarrow 0^{+}} x^{x}=$? See the last example in the textbook

Strategies

1. Try to compute the limit directly
2. If it doesn't work, try to write as a quotient $\frac{f(x)}{g(x)}$ * If $\left\{\begin{array}{l}\lim _{x \rightarrow a} f(x)=0 \text {, and } \\ \lim _{x \rightarrow a} g(x)=0\end{array}\right\}$ or if $\left[\begin{array}{l}\lim _{x \rightarrow a} f(x)=\infty \text {, and } \\ \lim _{x \rightarrow a} g(x)=\infty\end{array}\right\}$, try I'Hospital's Rule
3. If $\lim _{x \rightarrow a}[f(x)]^{g(x)}$ is of type " $00^{\prime \prime}$, " $\infty 0^{0 "}$, or " 1∞ "
write $\quad y=f(x)^{g(x)}$

$$
\ln y=g(x) \ln (f(x))
$$

Compute $\lim _{x \rightarrow a} \ln y$ first. Then $\lim _{x \rightarrow a} y=e^{\left(\lim _{x \rightarrow a} \ln y\right)}$

