Section 6.8 Indeterminate Forms l'Hospital's Rule

Read before / after class:
Textbook Examples
1, 5, 6, 9
"o" | "0.00" "indeterminate
power"
(ampute 0° or 0° or 1°
directly 0° or 0° or 1°

$$3 = 0°, 0°, 0°, 0°, 1°, 1° = Apply ln(x)
to get "o" or "co"$$

Review Sec 1.6 Limit Laws
Limit Laws Suppose that *c* is a constant and the limits

$$\lim_{x \to a} f(x) \quad \text{and} \quad \lim_{x \to a} g(x)$$
exist. Then
1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$
3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$
4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$
5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if } \lim_{x \to a} g(x) \neq 0$$
Law #5 does of work when
the limit of the denominator is contactioned.

Example

$$\lim_{\substack{X \to \left(\frac{\pi}{2}\right)^{-}}} \frac{1 - \sin x}{\cos x} = ?$$

$$\lim_{\substack{X \to \left(\frac{\pi}{2}\right)^{-}}} 1 - \sin x = 1 - \sin\left(\frac{\pi}{2}\right) = 1 - 1 = 0$$

$$\lim_{\substack{X \to \left(\frac{\pi}{2}\right)^{-}}} \cos x = \cos \frac{\pi}{2} = 0$$

$$\lim_{\substack{X \to \left(\frac{\pi}{2}\right)^{-}}} \cos x = \cos \frac{\pi}{2} = 0$$

$$\lim_{\substack{X \to \left(\frac{\pi}{2}\right)^{-}}} \cos x = \cos \frac{\pi}{2} = 0$$

$$\lim_{\substack{X \to \left(\frac{\pi}{2}\right)^{-}}} \cos x = \cos \frac{\pi}{2} = 0$$

- If (1-sin x) goes to O faster, the answer is O numerator
- If cosx goes to 0 faster, the answer is a denominator
- · If there is a compromise, the answer is a nonzero number

l'Hospital's Rule "?

"0" Rule

L'Hospital's Rule Suppose f and g are differentiable and $q'(x) \neq 0$ on an open interval I that contains a (except possibly at a). Suppose that

= 0

$$\lim_{x \to a} f(x) = 0 \quad \text{and} \quad \lim_{x \to a} g(x)$$
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Then

$$\lim_{x \to a} f(x) = 0 \quad \text{and} \quad \lim_{x \to a} g(x) = 0.$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$
if the limit on the right side exists (or is $\infty \text{ or } -\infty$).
$$\text{The rule works if we replace $\begin{bmatrix} \lim_{x \to a} \\ x \to a \end{bmatrix} \quad \text{with}$

$$\lim_{x \to a^{\pm}} \lim_{x \to a^{\pm}} \lim_{x \to a^{\pm}} \lim_{x \to -\infty} \int_{x \to -\infty}^{\infty} \lim_{x \to -\infty} \lim_{x$$$$

Solution:

Example: Evaluate $\lim_{x \to (\frac{\pi}{2})^{-}} \frac{1 - \sin x}{\cos x}$

l'Hospital's Rule " $\lim_{X \to \infty} \frac{\ln x}{\sqrt{x}} = \left(\begin{array}{c} \\ \\ \end{array} \right)$ In Sec 6.3, we said lnx "grows slower than any power function, so tx should win. • $\lim_{x \to a} \frac{f(x)}{\eta(x)}$ is called an Rule "" **L'Hospital's Rule** Suppose f and g are differentiable and $g'(x) \neq 0$ on an open indeterminate form of type 50 interval I that contains a (except possibly at a). Suppose that $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$ Next $\lim_{x \to a} \frac{f(x)}{q(x)} = \lim_{x \to a} \frac{f'(x)}{q'(x)}$ Then Apply this l'Hospital's Rule to the above situation if the limit on the right side exists (or is ∞ or $-\infty$). with The rule works if we replace līm X-7a with f(x) = ln xlim or lim $g(x) = \sqrt{x}$ X>at

l'Hospital's Rule "80"

Example:
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = ?$$

Solution: $\lim_{x \to \infty} \ln x = \infty$ so we can attempt to apply l'Hospital's kule $\frac{m \omega}{\omega}$ $\lim_{x \to \infty} \sqrt{x} = \infty$ (from prev. slide) $\lim_{x \to \infty} \ln x = \lim_{x \to \infty} \frac{d}{dx} (\ln x) = \lim_{x \to \infty} \frac{(\frac{1}{x})}{2} = \lim_{x \to \infty} \frac{1}{2} 2x^{\frac{1}{2}} = \lim_{x \to \infty} \frac{2}{2} = 0$

$$\lim_{X \to \infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \to \infty} \frac{1}{dx} \frac{(x)}{(x^{\frac{1}{2}})} = \lim_{x \to \infty} \frac{(x)}{(\frac{1}{2}x^{-\frac{1}{2}})} = \lim_{x \to \infty} \frac{1}{x} \frac{2x}{x} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0$$
So \sqrt{x} wins,
due to l'Hospital's
Rule " $\frac{\infty}{\infty}$ "
as expected
because power funs
grow faster than $\ln(x)$

Indeterminate Differences

Indeterminate Differences

General Strategy If $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = \infty$ and we want to compute lim f(x)-g(x)... **EXAMPLE 8** Compute $\lim_{x \to (\pi/2)^-} (\sec x - \tan x)$ $\lim_{x \to (\pi/2)^-} (\sec x - \tan x) = \lim_{x \to (\pi/2)^-} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right) \qquad \text{First, turn into}$ Next, try to $= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x} = \lim_{x \to (\pi/2)^{-}} \frac{-\cos x}{-\sin x} = 0 \quad \text{apply I'H} \quad \text{Rule "o" or "o"}$ Note that the use of l'Hospital's Rule is justified because $1 - \sin x \rightarrow 0$ and $\cos x \rightarrow 0$

type "00 - 00"

Note that the use of l'Hospital's Rule is justified because $1 - \sin x \to 0$ and $\cos x$ as $x \to (\pi/2)^-$.

type "0.00" Webwork Prob 7: Evaluate lim VX ln(X) $\lim_{\substack{x \to 0^+ \\ x \to 0^+}} \sqrt{x} = 0$ $\lim_{\substack{x \to 0^+ \\ x \to 0^+}} \sqrt{x$ Turn VX Ln(x) into a quotient by writing $\frac{\sqrt{X'}}{\left(\frac{1}{\sqrt{X}}\right)}$ or $\frac{\ln(x)}{\left(\frac{1}{\sqrt{X}}\right)}$ First, try writing $\frac{\sqrt{x}}{\left(\frac{1}{\ln x}\right)}$ $\lim_{x \to 0^+} \sqrt{x} = 0$ So we can attempt to use $\lim_{x \to 0^+} \frac{1}{2} = 0$ WARNING The following statement is FALSE If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = \infty$, then $\lim_{x \to a} f(x) g(x) = 0$ A TRUE **TRUE TRUE TR** $\frac{\frac{1}{dx}\sqrt{x}}{\frac{1}{dx}\left(\frac{1}{\ln x}\right)} \qquad \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\frac{1}{(\ln x)^{2}}} \qquad -\frac{1}{2}\sqrt{x}\left(\ln x\right)^{2}$ $\frac{\frac{1}{2}\sqrt{x}}{\ln x} \qquad \frac{1}{(\ln x)^{2}} \qquad \text{More complicated that}$ More complicated than the expression we started with.

Next: try the other quotient

+ype "0.00" $\lim_{X\to 0^+} \sqrt{1} \ln(x)$ Webwork Prob 7: Evaluate Turn VX Ln(x) into a quotient by $\lim_{\substack{X \to 0^+ \\ x \to 0^+}} \sqrt{\frac{1}{x}} = 0$ $\lim_{\substack{X \to 0^+ \\ x \to 0^+}} \ln(x) = -\infty$ $\lim_{\substack{X \to 0^+ \\ x \to 0^+}} \frac{\ln x}{\sqrt{1}}$ writing $\frac{\sqrt{X}}{\left(\frac{1}{\ln \chi}\right)}$ or $\left(\frac{\ln(\chi)}{\left(\frac{1}{\sqrt{X}}\right)}\right)$ So try writing as (1) $\lim_{x\to 0^+} \ln x = -\infty$ $\lim_{x\to 0^+} \ln x = \infty$ $\lim_{x\to 0^+} \ln x = \infty$ $\lim_{x \to 0^+} \frac{\ln(x)}{\left(x^{-\frac{1}{2}}\right)} = \lim_{x \to 0^+} \frac{\frac{d}{dx} \ln(x)}{\frac{d}{dx} \left(x^{-\frac{1}{2}}\right)} = \lim_{x \to 0^+} \frac{(\frac{1}{x})}{-\frac{1}{2}x^{-\frac{3}{2}}} = \lim_{x \to 0^+} \frac{x^{-1}}{(-\frac{1}{2})x^{-\frac{1}{2}}} = \lim_{x \to 0^+} \frac{x^{-1}}{(-\frac{1}{2})x^{-\frac{1}{2}}} = \lim_{x \to 0^+} \frac{x^{-1}}{x^{-\frac{1}{2}}} = \lim_{x \to 0^+} \frac{x^{-1}}{x^{-\frac{1}{2}}} = \lim_{x \to 0^+} \frac{x^{-1}}{(-\frac{1}{2})x^{-\frac{1}{2}}} = \lim_{x \to 0^+} \frac{x^{-1}}{x^{-\frac{1}{2}}} = \lim_{x$ Practice other "Indeterminate Products" (so VX wins!) · Textbook, Example 6

· Textbook, Example 7

· Webwork 9

EXAMPLE 5 Find $\lim_{x \to \pi^-} \frac{\sin x}{1 - \cos x}$.

EXAMPLE 5 Find
$$\lim_{x \to \pi^-} \frac{\sin x}{1 - \cos x}$$
.

Solution:

$$\lim_{x \to \pi^{-}} \frac{\sin x}{1 - \cos x} = \frac{\sin \pi}{1 - \cos \pi} = \frac{0}{1 - (-1)} = 0$$

$$\cdot \sin (x) \text{ is continuous at } x = \pi$$

$$\cdot (-\cos(x) \text{ is continuous at } x = \pi$$

Indeterminate Powers

Several indeterminate forms arise from the limit

1.	$\lim_{x \to a} f(x) = 0$	and	$\lim_{x \to a} g(x) = 0$	type 0 ⁰
2.	$\lim_{x \to a} f(x) = \infty$	and	$\lim_{x \to a} g(x) = 0$	type ∞^0
3.	$\lim_{x \to a} f(x) = 1$	and	$\lim_{x \to a} g(x) = \pm \infty$	type 1^{∞}

Strategy for all: Apply In

$$y = [f(x)]^{(g(x))}$$

$$ln y = ln [(f(x))^{g(x)}]$$

$$ln y = g(x) ln (f(x))$$

lim ln y will now be an $x \rightarrow a$ indeterminate form of $-type \frac{n'o''}{o}$ or $\frac{n'oo''}{oo''}$

Indeterminate power Example

Strategies

1. Try to compute the limit directly

2. If it doesn't work, try to write as a quotient
$$\frac{f(x)}{g(x)}$$

* If $\begin{pmatrix} \lim_{x \to a} f(x) = 0, and \\ \lim_{x \to a} g(x) = 0 \end{pmatrix}$ or if $\begin{pmatrix} \lim_{x \to a} f(x) = \infty, and \\ \lim_{x \to a} g(x) = \infty \end{pmatrix}$,
try I'Hospital's Rule
3. If $\lim_{x \to a} [f(x)]^{g(x)}$ is of type "00", " ∞° ", or " 10° "
write $y = f(x)^{g(x)}$
 $\lim_{x \to a} y = g(x) \ln(f(x))$
Compute $\lim_{x \to a} \ln y$ first. Then $\lim_{x \to a} y = e^{(\lim_{x \to a} \ln y)}$