Sec 6.4 (a) Derivatives of logarithmic functions knowing that $\frac{d}{dx} e^{x} = e^{x}$, use implicit Differentiation to compute $\frac{d}{dx} \ln x$ Let y= ln x Apply et to both sides: $e^{g} = e^{\ln x}$ e⁹ * × (since e[×] and ln × are inverse functions)

Differentiate with respect to X:

$$\frac{1}{dx} \left(e^{y} \right) = \frac{1}{dx} \left(x \right)$$

chain

rule

$$e^{y} \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{e^{y}} \frac{1}{x}$$

by $\frac{x}{x}$

Memorize!
$$\frac{d}{dx} \ln x = \frac{1}{x}$$

Textbook		
eq	1	

knowing that
$$\frac{d}{dx} \ln x = \frac{1}{x}$$
, compute $\frac{d}{dx} \left[\ln \left(\frac{\text{some}}{function} \right) \right]$

 $\frac{E \times 1}{d \times 1}$ Evaluate $\frac{d}{d \times 1} \ln \sqrt[3]{x}$

$$\frac{d}{dx} l_n \sqrt[5]{x'} = \frac{d}{dx} \left(l_n \left(x^{\frac{t}{5}} \right) \right)$$
$$= \frac{d}{dx} \left(\frac{t}{5} l_n \left(x \right) \right)$$
$$= \frac{t}{5} \frac{1}{x}$$

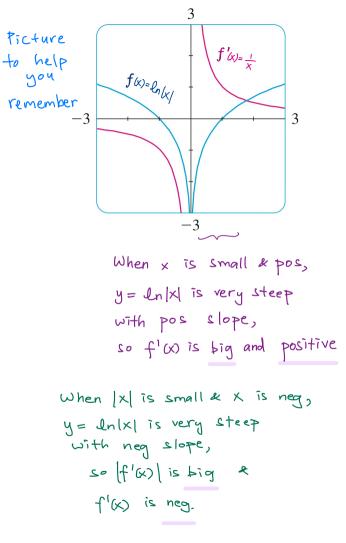
knowing that
$$\frac{d}{dx} \ln x \stackrel{e_{1}}{=} \frac{1}{x}$$
, compute $\frac{d}{dx} \left[ln \begin{pmatrix} \text{some} \\ \text{function} \end{pmatrix} \right]$
Review: $\sin x = \frac{d}{dx} \sin x = \cos x$
 $\cos x \stackrel{d}{=} \frac{d}{dx} \sin x = \cos x$
 $\cos x \stackrel{d}{=} \frac{d}{dx} \cos x = \sin x$
 $-\sin x \stackrel{d}{=} \frac{d}{dx} \cos x = \sin x$
 $-\cos x$
 $\sin x$
 \vdots
Review: $\tan x = \frac{\sin x}{\cos x}$, $\cot x = \frac{\cos x}{\sin x}$
 $Ex 2$ Find $\frac{d}{dx} \ln (\sin x)$
Take a minute to attempt this on your own.

Use eg 1 and Chain rule.

knowing that
$$\frac{d}{dx} \ln x = \frac{1}{x}$$
, compute $\frac{d}{dx} \left[ln \left(\frac{some}{function} \right) \right]$
Review: $\sin x = \frac{d}{dx} \sin x = \cos x$
 $\cos x = \frac{d}{dx} \cos x = -\sin x$
 $-\sin x = \frac{d}{dx} \cos x = -\sin x$
 $\sin x = \frac{1}{\cos x}$, $\cot x = \frac{\cos x}{\sin x}$
Review: $\tan x = \frac{\sin x}{\cos x}$, $\cot x = \frac{\cos x}{\sin x}$
 $\frac{-\pi}{2} + \frac{\pi}{2}$
 $\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2}$
 $\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}$

Ex 3 Let
$$f(x) := \ln |x|$$
 with
domain $(-\infty, 0) \cup (0, \infty)$
(all numbers except 0)
This means $f(x) = \begin{cases} \ln x & \text{if } x > 0 \\ \ln(-x) & \text{if } x < 1 \end{cases}$
So $f'(x) = \begin{cases} \frac{1}{x} & \text{if } x < 1 \\ \frac{1}{-x}(-1) = \frac{1}{x} & \text{if } x < 1 \end{cases}$
So $f'(x) = \frac{1}{x} \text{ for all } x \neq 0$
Textbook
Eq. 4 $\int \frac{1}{x} dx = \ln |x| + C$

89, 4



Textbook

$$E_{q} \oplus$$

$$\int \frac{1}{x} dx = \ln |x| + C$$
Recall:
$$\int \sin x + \frac{1}{4x} \sin x = \cos x$$
 $\cos x + \frac{1}{4x} \sin x = \cos x$
 $\cot x = \frac{\cos x}{\sin x} -\frac{\cos x}{\sin x} + \frac{1}{4x} \cos x = -\sin x$
 $-\cos x$

$$\frac{Ex 4}{Answer}$$
Calculate $\int \cot x dx$

$$\int \cot x dx = \int \frac{\cos x}{\sin x} dx$$
Try $u = sin x du = -sin x dx$

$$= \int \frac{1}{u} du$$

$$= \int \frac{1}{u} du$$
Try $u = sin x du = \cos x dx$

$$U = sin x du = \cos x dx$$

$$U = sin x du = \cos x dx$$

* Practice a similar problem: Textbook Example 11, this Sec 6.4

6.4(b) Logarithmic Differentiation (new technique)

(Webwork Trob 6) $Q: f(x) = (sin(x))^{x}$. Find f'(1).

Apply logarithmic differentiation
1.)
$$y = (\sin (x))^{x}$$

Take natural logarithms of both sides:
 $ln(y) = ln((\sin x)^{x}]$
Simplify right hand side using properties of ln :
 $ln(y) = x ln(\sin (x))$, since $ln(\Box^{r}) = r ln(\Box)$
2) Differentiate implicitly with respect to x:
 $\frac{d}{dy}(ln[y]) \frac{dy}{dx} = \frac{d}{dx} \left[x ln(\sin x) \right]$
 $\frac{1}{y} \frac{dy}{dx} = x \cdot \frac{1}{dx}(ln(\sin x)) + \frac{d}{dx}(x) \cdot ln(\sin x)$
 $= x \cdot \frac{1}{dx} \cos x + ln(\sin x)$
3) Solve for $\frac{dy}{dx} = y \left(x \cdot \frac{1}{\sin x} \cos x + ln(\sin x) \right)$
 $= (\sin x)^{x} \left(x \cdot \frac{1}{\sin x} \cos x + ln(\sin x) \right)$
 $= (\sin x)^{x} \left(x \cdot \frac{1}{\sin x} \cos x + ln(\sin x) \right)$
 $= (\sin x)^{x} \left(x \cdot \frac{1}{\sin x} \cos x + ln(\sin x) \right)$

Recall Sec 6.2: If
$$g(x) = b^{x}$$
 then $g'(x) = g'(0) \cdot b^{x}$
If $b = e$ then $g'(0) = 1$ so $\frac{d}{dx}(e^{x}) = e^{x}$
Q: If $b \neq e$, what is $\frac{d}{dx}(b^{x}) ?$ Note $\frac{d}{dx}(b^{x})$ is not b^{x} if $b \neq e$.
Ex what is $\frac{d}{dx}(5^{x}) = r \frac{d}{dx}(\frac{b}{2})^{x} ? \frac{d}{dx}(t^{x})$ is not b^{x} if $b \neq e$.
Answer Let $y = b^{x}$ where $b \neq 1$.
 $y = e^{(ln(L)]x}$ by Fact G in previous page
Note: $ln(b)$ is a constant,
so we can treat it like any number
 $\frac{dy}{dx} = ln(b) \cdot e^{(ln(L)]x}$ (chain Rule: $\frac{d}{dx}(e^{cx}) = Ce^{cx}$.)
Fact G says $b^{x} = e^{(ln(L)]x}$
so $\frac{dy}{dx} = ln(b) \cdot b^{x}$,
So $\frac{dy}{dx} = ln(b) \cdot b^{x}$,
 $\int \frac{d}{dx}(b^{x}) = ln(b) \cdot b^{x}$.

$$\frac{E_{X}}{d_{X}} = \frac{1}{2} \frac{1}{2} \frac{5^{X}}{d_{X}} = \frac{1}{2} \ln 5 \cdot \frac{5^{X}}{d_{X}}$$

b. $\frac{1}{d_{X}} \left((e^{2})^{X} \right) = \ln (e^{2}) \cdot (e^{2})^{X} = 2 \ln (e) \cdot e^{2X} = 2 e^{2X}$.

From
$$\frac{d}{dx}(b^{X}) = J_{n}(b). b^{X}$$
we get ... $b^{X} + C = \int l_{n}(b) b^{X} dx$

$$\frac{l}{l_{n}(b)} \left(b^{X} + C \right) = \int b^{X} dx$$

$$\frac{b^{X}}{l_{n}b} + D = \int b^{X} dx$$

use Implicit Differentiation to compute $\frac{d}{dx} (\log_{b} x)$ Let $y = \log_b x$, then apply b^{\Box} to both sides: by = h(logbx) by #* (because bx and logbx are inverse functions) Differentiate with respect to X $\frac{d}{dx}(b^{y}) = \frac{d}{dx}(x)$ $\left(b^{9}(ln b)\right) \cdot \left(\frac{dy}{dx}\right) = 1$ by (*) because of chain rule $\left(\begin{array}{c} \times \\ 1 \end{array} \right) \left(\begin{array}{c} dy \\ dx \end{array} \right) = \left[\begin{array}{c} 1 \end{array} \right] \left(\begin{array}{c} \text{since } b^{y} \stackrel{\text{**}}{=} \times \right)$ $\frac{dy}{dx} = \frac{1}{x(2nb)}$ So $\frac{d}{dx}(\log b^{-1}) = \frac{1}{x(2nb)}$

More practice, similar to Webwork $(4 + 2x^2)$ ln (x) Differentiate y = $\ln y = \ln \left(\left(4 + 2x^2 \right)^{\ln (x)} \right)$ Answer $\ln y = \ln(x) \ln(4 + 2x^2) \left(\text{because } \ln(\Box^r) = r \ln(\Box) \right)$ by eq. 1 $\frac{1}{y} \frac{dy}{dx} = \left(\frac{d}{dx} \ln(x)\right) \ln(4 + 2x^2) + \ln(x) \cdot \frac{d}{dx} \left(\ln(4 + 2x^2)\right)$ $\frac{d}{dy} \ln y = \frac{1}{y}$ $\frac{1}{y} \frac{dy}{dx} = \frac{1}{y}$ $\frac{1}{y} \frac{dy}{dx} = \frac{1}{x} \ln (4 + 2x^2) + \ln (x) \cdot \frac{1}{4 + 2x^2} \cdot 4x$ Multiply by y: $\frac{dy}{dx} = y$. $\left(\frac{\ln(4+2x^2)}{x} + \frac{4x \ln(x)}{4+2x^2}\right)$ $\frac{dy}{dx} = \left(4 + 2x^{2}\right)^{\ln(x)} \left(\frac{\ln(4 + 2x^{2})}{x} + \frac{4x \ln(x)}{4x^{2}}\right)$

Practice applying Logarithmic Differentiation (new technique) Differentiate $y = x^{\sqrt{x'}}$ Hint: Start by applying In to both sides then apply implicit differentiation) (Read solution in Textbook Sic 6.4 Example 16)