Sec 6.3 Logarithmic functions

Goal : inverse of the natural exponential function e^{x} $\&$ its properties

Q: What do you call trees that have beat?
A :

Def The inverse function of e^{x} is called the natural logarithm, denoted by \ln.
(Recall $f^{-1}(x)=y \Longleftrightarrow f(y)=x$)

$$
\ln (x)=y \Longleftrightarrow e^{y}=x
$$

Read "natural \log of x "
Def In general, if b is positive and $b \neq 1$, then b^{x} is $1-1$. The inverse function of b^{x} is denoted $\log _{b} x$.

$$
\underbrace{\log _{b}(x)}_{b}=y \Leftrightarrow b^{y}=x
$$

Note: $\ln (x)$ is shorthand for $\log _{e} x$
Read "log base b of x "

- Think: $\log _{\text {(base) }}(x)=$ (exponent) \Longleftrightarrow (base $^{\text {(exponent) }}=x$
* Domain of $b^{x}=$ all real numbers $=$ image of $\log _{b} x$
* Image of $b^{x}=$ all positive numbers $=$ domain of $\log _{b} x$ (if $b \neq 1$)

Properties of logarithmic functions
Recall: f^{-1} compose f is the identity function. (Sec 6.1) f compose f^{-1} is also the identity function.

1) $\ln \left(e^{x}\right)=x$ for all x in $\begin{gathered}\{\text { all real numbers }\} \\ \left.\text { (domain of }{ }^{x}\right)\end{gathered}$ $\log _{b}\left(b^{x}\right)=x$ (domain of e^{x})
2) $e^{\ln (x)}=x$ for all x in \{all positive numbers\}

$$
b^{\left(\log _{b}(x)\right)}=x
$$

$$
\text { (domain of } \ln x \text {) }
$$

3) Let $\ln (x)=M, \quad \ln \left(x^{r}\right)=A$
so $\quad x=e^{M}, \quad x^{r}=e^{A}$
So $\quad\left(e^{M}\right)^{r}=x^{r}=e^{A}$
Recall $\left(e^{M}\right)^{r}=e^{M r}$ $(\operatorname{Sec} 6.2)$
So $\quad e^{M r}=e^{A}$
Apply ln to both sides:
$\begin{aligned} r M & =A \\ \text { So } r \ln (x) & =\ln \left(x^{r}\right)\end{aligned}$
cog. $2 \ln 5=$ $\ln \left(5^{2}\right)$
4) Let $\ln (x)=M, \quad \ln (y)=N$

Then $x=e^{M}, \quad y=e^{N}$

$$
x y=e^{M} e^{N}=e^{M+N}
$$

个 $($ Sec 6.2)
properties of exponential
$x y=e^{M+N}$ functions
$\ln (x y)=\ln \left(e^{M+N}\right)=M+N$
So $\ln (x y)=\ln (x)+\ln (y)$
e.g. $\quad \ln (15)=\ln (3)+\ln (5)$
5)

Write $\log _{b} x$ in terms of $\ln (\square)$
Let $y=\log _{b} x$
Then $b^{y}=x$
Apply $\ln (\square)$ to both sides:

$$
\ln \left(b^{y}\right)=\ln (x)
$$

$y \ln (b)=\ln (x)$ by $f a c t(3)$
So $y=\frac{\ln (x)}{\ln (b)} \quad \log _{10} 5=$

$$
\log _{b}(x)=\frac{\ln (x)}{\ln (b)} \quad \frac{\ln (5)}{\ln (10)}
$$

6)

Write b^{x} in terms of $e^{\square} \& \ln (\square)$:
Let $y=b^{x}$
Apply $\ln (\square)$ to both sides:

$$
\ln (y)=\ln \left(b^{x}\right) \underset{\text { By Fact (3) }}{\underset{\sim}{4} \times \ln (b)}
$$

Apply $e^{(\square)}$ to both sides:

$$
\begin{aligned}
& e^{\ln y}=e^{x \ln (b)} \\
& \text { So } y=e^{x \ln (b)} \operatorname{e.g} \cdot\left(\frac{2}{3}\right)^{x}=e^{x \ln \left(\frac{2}{3}\right)} \\
& b^{x}=e^{(x \ln (b))}=e^{(\ln (b) x)}
\end{aligned}
$$

To get the graph of f^{-1}, reflect the graph of f about the line $y=x$

FIGURE 1
The graph of $y=\log _{b} x$ is the reflection of the graph of $y=b^{x}$ about the line $y=x$

FIGURE 3
The graph of $y=\ln x$ is the reflection . The image of $f(x)$
of the graph of $y=e^{x}$ about the line $y=x$.
is \square
Answer:
the interval $(-\infty, \infty)$ or \mathbb{R} or all real numbers
vertical asymptote
for $y=\log \left(\frac{1}{2}\right)(x)$

horizontal asymptote for $y=\left(\frac{1}{2}\right)^{x}$

$$
y=\log _{\left(\frac{1}{2}\right)}(x)
$$

Graph of $y=\log _{b}(x)$ is the reflection
of the graph of $y=b^{x}$ about the line $y=x$

Exponential function $b^{x} \quad$ Logarithmic function $\log _{b} x$

Larger b means
faster growth

Larger b means slower growth

The
Let $b>1$. Then

- $\lim _{x \rightarrow \infty} \log _{b} x=\infty$
- $\lim _{x \rightarrow 0^{+}} \log _{b} x=-\infty$

These mean the function is not bounded!

Let $b>1$. Then $\log _{b} x \rightarrow \infty$ as $x \rightarrow \infty$, but this happens very slowly.

In fact, let's compare \sqrt{x} and $\ln x=\log _{e} x$

At first the two graphs $y=\sqrt{x}$ and $y=\ln x$ grow at comparable rates, but eventually \sqrt{x} surpasses $\ln x$

$$
\frac{\ln x}{x^{\frac{1}{2}}} \rightarrow \square \quad \text { as } x \rightarrow \infty
$$

(We'll compute this in Sec 6.8)

x	1	2	5	10	50	100	500	1000	10,000	100,000
$\ln x$	0	0.69	1.61	2.30	3.91	4.6	6.2	6.9	9.2	11.5
\sqrt{x}	1	1.41	2.24	3.16	7.07	10.0	22.4	31.6	100	316
$\frac{\ln x}{\sqrt{x}}$	0	0.49	0.72	0.73	0.55	0.46	0.28	0.22	0.09	0.04

FIGURE 5

FIGURE 6

