Sec 6.2 Exponential functions therivatives
The natural exponential function e^{x} is the most important (and "natural") function in Calculus
Coming up next: The inverse of exponential functions (the logarithmic function)
Def An exponential function is of the form $f(x)=b^{x}$ exponent

$$
f(\text { exponent })=\underbrace{\text { exponent }}_{\text {a positive number }}
$$

Ex

- $f(x)=2^{x}, f(x)=\left(\frac{1}{2}\right)^{x}$ are exponential functions
- $f(x)=x^{2}, f(x)=x^{\frac{1}{2}}=\sqrt{x}$ are not exponential functions; They are power functions.

Def What does b^{x} mean?

- If $x=0, b^{x}=b^{0}=1$
. If $x=4, b^{x}=b^{4}=\underbrace{b b b b}_{4 \text { times }}$
- If $x=n$ is a positive integer, $b^{x}=b^{n}=\underbrace{b b \ldots b}_{n \text { times }}$
. If $x=-n$ is a negative integer, $b^{x}=b^{-n}=\frac{1}{b^{n}}=\underbrace{\frac{1}{b . b \ldots b}}$
. If $x=\frac{2}{5}, b^{x}=b^{\frac{2}{5}}=\sqrt[5]{b^{2}}=(\sqrt[5]{b})^{2}$
. If $x=\frac{p}{q}$ is a $\frac{\text { rational number }}{\text { meaning a fraction }}, b^{x}=b^{\frac{p}{q}}=\sqrt[2]{b^{p}}=\left(\sqrt{b^{p}}\right)^{q}$
- If x is irrational (meaning, x cannot be written as a fraction), like $x=\sqrt{3}, x=\pi$?

Idea: Plot the points for the rational numbers only, then "fill in" the holes.

Graph of $y=2^{x}$
where x is rational

Def If b is a positive number, define $b^{x}=\lim _{r \rightarrow x} b^{r}$ where the limit is over the rational numbers

Why does this Def makes sense?
Idea: Any irrational number can be approximated as closely as we like by a rational number

Example π is the limit of the sequence of rational numbers

$$
3.14<3.141<3.1415<3.1415926<\cdots
$$

"We can find a rational number which is as close to π as we like"

Sketching graphs of b^{x}

1) If $b>1, f(x)=b^{x}$ is always increasing.

- Larger base b means b^{x} grows more rapidly for $x>0$.
- $2>\frac{3}{2}$ so 2^{x} grows more rapidly for >0

$$
\lim _{x \rightarrow \infty} b^{x}=\infty, \lim _{x \rightarrow-\infty} b^{x}=0
$$

2) If $b<1, f(x)=b^{x}$ is always decreasing.

- Larger base b means

- $\frac{2}{3}>\frac{1}{2}$ so $\left(\frac{2}{3}\right)^{x}$ is bigger than $\left(\frac{1}{2}\right)^{x}$ for $x>0$,

$$
\lim _{x \rightarrow \infty} b^{x}=0, \lim _{x \rightarrow-\infty} b^{x}=\infty .
$$

3) Graph of $y=b^{-x}$ is the reflection of the graph of $y=b^{x}$ about the y-axis.

why? $\left(x, b^{-x}\right)$ is a point in the graph of $y=b^{-x}$
$\left(-x, b^{-x}\right)$ is a point in the graph of $y=b^{x}$
Remember
If $b>1$, the exponential function b^{x} grows far more rapidly than power functions!

Thu If b is a positive number and $b \neq 1$, then

* $f(x)=b^{x}$ is continuous
* $\underbrace{\text { domain of } f}_{\text {all possible inputs of } f}$ is all real numbers $(-\infty, \infty)$
* image of f is $(0, \infty)$
all possible outputs of f
$* \quad b^{x+y}=b^{x} b^{y}$

$$
*\left(b^{x}\right)^{y}=b^{x y}
$$

* $(a b)^{x}=a^{x} b^{x}$ (if a is also a positive number)

Thm If b is positive \& $f(x)=b^{x}$,
then $f^{\prime}(x)=($ constant $) b^{x}$.
"rate of change of b^{x} is proportional to b^{x} "
In fact, $f^{\prime}(x)=f^{\prime}(0) b^{x}$
The bigger b is, the bigger this $f^{\prime}(0)$ is

Most exciting definition
If we consider all positive numbers b, there is exactly one number b such that the slope of $y=b^{x}$ at $x=0$ is equal to 1 .

This number is called e. It's close to 2.718 . e is transcendental, meaning we cant use just algebra to define it.

We say $f(x)=e^{x}$ is the natural exponential function

From above tho, we have $f^{\prime}(x)=f^{\prime}(0) e^{x}=1 \cdot e^{x}$, so $\frac{d}{d y} e^{x}=e^{x}$
Fact The only function which is equal to its own derivative is $f(x)=A e^{x}$ some constant.
Ex 1 Let $f(x)=e^{\frac{1}{x}}$. Domain of f is all nonzero real numbers. Find asymptotes, $f^{\prime}(x), f^{\prime \prime}(x)$, then sketch its graph.
$f(x)$ is not defined at $x=0$, so check if there is a vertical asymptote as $x \rightarrow 0^{+}$or $x \rightarrow 0^{-}$.

* $\lim _{x \rightarrow 0^{+}} e^{\frac{1}{x}}=$?

Recall:

As $x \rightarrow 0^{+},\left(\frac{1}{x}\right) \rightarrow \infty$
call this t
so $\lim _{x \rightarrow 0^{+}} e^{\frac{1}{x}}=\lim _{t \rightarrow \infty} e^{t}=\infty \quad \begin{aligned} & \text { So } x=0 \text { is a vertical } \\ & \text { asymptote }\end{aligned}$ asymptote from the right

* $\lim _{x \rightarrow 0^{-}} e^{\frac{1}{x}}=$? As $x \rightarrow 0^{-}, \frac{1}{x} \rightarrow-\infty$

So $\lim _{x \rightarrow 0^{-}} e^{\frac{1}{x}}=\lim _{u \rightarrow-\infty} e^{u}=0 \quad$ Review: Sec 1.8 in textbook "removable discontinuity"

* $\lim _{x \rightarrow \infty} e^{\frac{1}{x}}=$? As $x \rightarrow \infty, \frac{1}{x} \rightarrow 0$
$\left.\begin{array}{l}\text { So } \lim _{x \rightarrow \infty} e^{\frac{1}{x}}=e^{\left(\lim _{x \rightarrow \infty} \frac{1}{x}\right)}=e^{0}=1 \\ \lim _{x \rightarrow-\infty} e^{\frac{1}{x}}=e^{\left(\lim _{x \rightarrow-\infty} \frac{1}{x}\right)}=e^{0}=1\end{array}\right\}$
So $y=1$ is a horizontal asymptote to the left and right

First sketch:
because $x=0$ is

To check when $f(x)$ is increasing/decreasing/concave up or down, compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$:

$$
\begin{aligned}
& f(x)=e^{\frac{1}{x}} \\
& f^{\prime}(x)=e^{\frac{1}{x}} \frac{d}{\text { Chain Rule }} \frac{1}{d x}\left(\frac{1}{x}\right)=e^{\frac{1}{x}}\left(-\frac{1}{x^{2}}\right)=\underbrace{-x^{-2}}_{\begin{array}{c}
\text { always } \\
\text { Review }
\end{array}} \underbrace{e^{\frac{1}{x}}}_{\text {always pec } 2.5}
\end{aligned}
$$

So $f(x)$ is decreasing everywhere

$$
\left.\begin{array}{rl}
f^{\prime \prime}(x) & =-\left[x^{-2}\left(e^{\frac{1}{x}}\right)^{\prime}+-2 x^{-3} \cdot e^{\frac{1}{x}}\right]=-\left[x^{-2}\left(-x^{-2} e^{\frac{1}{x}}\right)-2 x^{-3} \cdot e^{\frac{1}{x}}\right] \\
\text { Review Rule sec } 2,3
\end{array}\right]
$$

So $f^{\prime \prime}(x)$ is positive when $1+2 x>0 \Leftrightarrow 2 x>-1 \Leftrightarrow x>-\frac{1}{2}$ (Concave up)
and $x \neq 0$ and $x \neq 0$
$f^{\prime \prime}(x)$ is negative when $1+2 x<0 \Leftrightarrow 2 x<-1 \Leftrightarrow x<-\frac{1}{2}$ (concave down)

Final sketch:
because $x=0$ is a vertical asymptote

because $y=1$ is a horizontal asymptote from left and right $\&$ when x is positive, $e^{\frac{1}{x}}$ is bigger than 1 when x is negative, $e^{\frac{1}{x}}$ is smaller than 1
concave up on $\left(-\frac{1}{2}, 0\right)$ and $(0, \infty)$

Concave down on $\left(-\infty,-\frac{1}{2}\right)$

- End of Example 1 -

Fact: Since $\frac{d}{d x} e^{x}=e^{x}$, we have $\int e^{x} d x=e^{x}+C$

Ex 2 $\int e^{\left(x^{3}\right)} x^{2} d x=$? Review u-substitution Sec 4.5
Try $u=x^{3}, \quad d u=3 x^{2} d x$

$$
\frac{1}{3} d u=x^{2} d x
$$

$$
\begin{aligned}
\int e^{\left(x^{3}\right)} x^{2} d x=\int e^{u} \frac{1}{3} d u=\frac{1}{3} \int e^{u} d u & =\frac{1}{3} e^{u}+C \\
& =\frac{1}{3} e^{\left(x^{3}\right)}+C
\end{aligned}
$$

Ex 2

