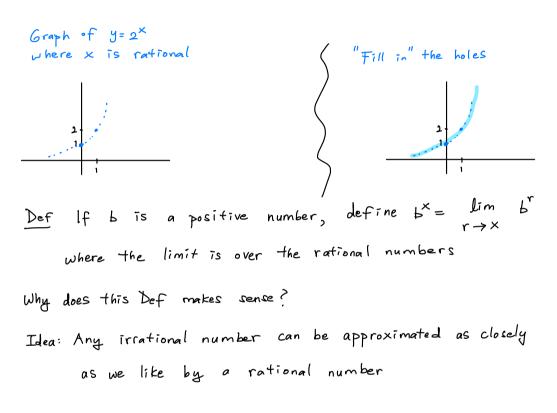
Sec 6.2 Exponential functions
$$+, derivatives$$

The natural exponential function e^{X} is the most
important (and "natural") function in Calculus
Coming up next: The inverse of exponential functions
(the logarithmic function)
Def An exponential function is of the form $f(X) = b^{X}$
 $f(exponent) = base variable
a positive number
 E_{X}
 $f(x) = 2^{X}$, $f(x) = (\frac{1}{2})^{X}$ are exponential functions
 $f(x) = x^{2}$, $f(x) = (\frac{1}{2})^{X}$ are not exponential functions;
They are power functions.
Def What does b^{X} mean?
 $f(x = 0, b^{X} = b^{0} = 1$
 $f(x = n is a positive integer, $b^{X} = b^{0} = \frac{1}{b} = \frac{1}{b \cdot b \cdot \cdots \cdot b}$
 $f(x = n is a negative integer, $b^{X} = b^{0} = \frac{1}{b} = \frac{1}{b \cdot b \cdot \cdots \cdot b}$
 $f(x = \frac{2}{5}, b^{X} = b^{0} = \frac{5}{5} = \frac{5}{5} = \frac{5}{5} = (\frac{5}{5}b^{2})^{2}$
 $f(x = \frac{p}{7} is a rational number , b^{X} = b^{T} = \sqrt{b^{T}} = (\sqrt{b^{T}})^{2}$$$$

- If x is irrational (meaning, x cannot be written as a fraction), like $x = \sqrt{3}$, $x = \pi$?
 - Idea: Plot the points for the rational numbers only, then "fill in" the holes.



Example TT is the limit of the sequence of rational numbers 2.14
$$<$$
 3.141 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415 $<$ 3.1415

Sketching graphs of
$$b^{\times}$$

1) If $b > 1$, $f \& b^{\times}$ is always increasing.
Larger base b means
 b^{\times} grows more rapidly for $\times > 0$.
 $2 > \frac{3}{2}$ so 2^{\times} grows more
rapidly for > 0
. $\lim_{X \to \infty} b^{\times} = \infty$, $\lim_{X \to -\infty} b^{\times} = 0$
2) If $b < 1$, $f(x) = b^{\times}$ is always decreasing.
. Larger base b means
 b^{\times} is bigger for $\times > 0$
. $\lim_{X \to \infty} b^{\times} = 0$, $\lim_{X \to -\infty} b^{\times} = \infty$.
3) Graph of $y = b^{\times}$ is the reflection
of the graph of $y = b^{\times}$
about the y-axis.
 $\lim_{X \to \infty} b^{\times} = 0$, $\lim_{X \to -\infty} b^{\times} = 0$.
3) Graph of $y = b^{\times}$ is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point in the graph of $y = b^{\times}$
 (x, b^{\times}) is a point power function b^{\times}
 (x, b^{\times}) is a point

The lf b is a positive number and
$$b \neq 1$$
, then
* $f(x) = b^{x}$ is continuous
* domain of f is all real numbers $(-o_{3}\infty)$
all possible inputs of f
* image f f is $(b_{5}\infty)$
all possible outputs of f
* $b^{x+y} = b^{x}b^{y}$ * $(b^{x})^{y} = b^{xy}$
* $(ab)^{x} = a^{x}b^{x}$ (if a is also a positive number)
Then lf b is positive & $f(x) = b^{x}$,
then $f'(x) = (constant)b^{x}$.
"rate of change of b^{x} is proportional to b^{x} "
In fact, $f'(x) = f'(a)b^{x}$
The bigger b is, the bigger this $f'(a)$ is
Most exciting definition
If we consider all positive numbers b,
there is exactly one number b such that
the slope of $y = b^{x}$ at $x=0$ is equal to 1.
This number is called e. It's close to 2.718.
e is transcendental, meaning we can't use just algebra to define it.
We say $f(x) = e^{x}$ is the natural exponential function

From above then, we have
$$f(x) = f'(0) e^{x} = 1.e^{x}$$
, so $\frac{d}{dy}e^{x} = e^{x}$
Fact The only function which is equal to
its own derivative is $f(x) = Ae^{x}$
some constant.
Ex 1 Let $f(x) = e^{\frac{1}{x}}$. Domain of f is all nonzero real numbers.
Find asymptotes, $f'(x)$, $f''(x)$, then sketch its graph.
 $f(x)$ is not defined at $x=0$, so check if
there is a vertical asymptote as $x \rightarrow 0^{+}$ or $x \rightarrow 0^{-}$.
* $\lim_{x \rightarrow 0^{+}} e^{\frac{1}{x}} = \frac{2}{x}$
Recall: $\int_{0}^{1} e^{\frac{1}{x}} = As \ x \rightarrow 0^{-}, \ \frac{1}{x} \rightarrow -\infty$
so $\lim_{x \rightarrow 0^{-}} e^{\frac{1}{x}} = \frac{2}{x}$. As $x \rightarrow \infty^{-}, \ \frac{1}{x} \rightarrow -\infty$
so $\lim_{x \rightarrow 0^{-}} e^{\frac{1}{x}} = \frac{2}{x}$. As $x \rightarrow \infty^{-}, \ \frac{1}{x} \rightarrow -\infty$
so $\lim_{x \rightarrow 0^{-}} e^{\frac{1}{x}} = \frac{2}{x}$. As $x \rightarrow \infty^{-}, \ \frac{1}{x} \rightarrow -\infty$
so $\lim_{x \rightarrow 0^{-}} e^{\frac{1}{x}} = \frac{2}{x}$. As $x \rightarrow \infty^{-}, \ \frac{1}{x} \rightarrow -\infty$
so $\lim_{x \rightarrow 0^{-}} e^{\frac{1}{x}} = \frac{2}{x}$. As $x \rightarrow \infty^{-}, \ \frac{1}{x} \rightarrow -\infty$
so $\lim_{x \rightarrow 0^{-}} e^{\frac{1}{x}} = \frac{2}{x}$. As $x \rightarrow \infty^{-}, \ \frac{1}{x} \rightarrow -\infty$
so $\lim_{x \rightarrow 0^{-}} e^{\frac{1}{x}} = \frac{2}{x}$. As $x \rightarrow \infty^{-}, \ \frac{1}{x} \rightarrow 0$
So $\lim_{x \rightarrow \infty} e^{\frac{1}{x}} = \frac{2}{x}$. As $x \rightarrow \infty^{-}, \ \frac{1}{x} \rightarrow 0$
So $\lim_{x \rightarrow \infty} e^{\frac{1}{x}} = e^{(\lim_{x \rightarrow \infty} \frac{1}{x})} = e^{0} = 1$
* $\lim_{x \rightarrow \infty} e^{\frac{1}{x}} = e^{(\lim_{x \rightarrow \infty} \frac{1}{x})} = e^{0} = 1$
* $\lim_{x \rightarrow -\infty} e^{\frac{1}{x}} = e^{(\lim_{x \rightarrow \infty} \frac{1}{x})} = e^{0} = 1$

First sketch: because X=0 is a vertical asymptote from the right because y=1 is a horizontal asymptote from left and right & nor when x is positive, ex is bigger than 1 because when x is negative, ex is smaller than 1 lim fGx)=0 $X \rightarrow 0^{-}$ To check when f(x) is increasing/decreasing/concave up or down, Compute f'(x) and f''(x): f(x)=e* $f'(x) = e^{\frac{1}{x}} \frac{d(\frac{1}{x})}{dx}$ $e^{\frac{1}{x}}\left(-\frac{1}{x^{2}}\right) = -x^{-2}e^{\frac{1}{x}}$ = always always positive negative Chain Rule Review Sec 2.5 because X2 >0 when X =0 so f(x) is decreasing everywhere $(e^{\frac{1}{x}})'$ product Rule Review Sec 2.3 $= x^{-4} e^{\frac{1}{x}} + 2x^{-3} e^{\frac{1}{x}} = \left(\frac{1}{x^{4}} + \frac{2}{x^{3}}\right) e^{\frac{1}{x}} = \frac{\left(1 + 2x\right)}{x^{4}} e^{\frac{1}{x}}$ always always positive

So f'(x) is positive when $|+2x > 0 \iff 2x > -1 \iff x > -\frac{1}{2}$ (concave up) and $x \neq 0$

f'(x) is negative when $1+2x < 0 \iff 2x < -1 \iff x < -\frac{1}{2}$ (concave down) Final sketch:

because X=0 is
a vortical asymptote
from the right
concave up
because y=1 is a horizontal asymptote
from left and right R
when x is positive,
$$e^{\frac{1}{x}}$$
 is bigger than 1
when x is negative, $e^{\frac{1}{x}}$ is smaller than 1
concave up on $(-\frac{1}{2}, 0)$
and $(0, 00)$
Concave down on $(-\infty, -\frac{1}{2})$
— End of Example 1
Fact: Since $\frac{1}{dx}e^{x} = e^{x}$, we have $\int e^{x} dx = e^{x} + C$
 $\frac{Ex 2}{dx} \int e^{(x^3)} x^2 dx = \frac{2}{3}$ Review u-substitution
Sec 4.5
Try $u = x^3$, $du = 3x^2 dx$
 $\int e^{(x^3)} x^2 dx = \int e^{\frac{1}{3}} du = \frac{1}{3} \int e^{u} du = \frac{1}{3} e^{\frac{u}{3}} + C$
 $= \frac{1}{\frac{1}{3}} e^{(x^3)} + C$