Ch 6 main idea Inverse functions
exponential inverse logarithmic
exponential inverse logarithmic
inverse trig functions
Sec 6.1 Inverse functions
Def A function
$$g: A \longrightarrow B$$
 is called one-to-one (1-1) if...
all possible all possible
inputs outputs
(domain) (image in most textbooks - varge in ours)
if $a_1 \neq a_2$ then $g(a_1) \neq g(a_2)$
"g never takes on the same value twice"
If you can find two inputs a_{1,a_2} where $g(a_1) = g(a_2)$,
we say g is not one-to-one.

"g takes on the same value twice"

<u>Ex 2</u> Let $f(x) = \chi^3 + 2$. Do you think f(x) is one-to-one?

Simply reverse the arrows

g(1) = 2	means	g ⁻¹ (2) = 1
g(e) = 5	means	g^(5)=2
g (3) = 7	means	g~'(7)=3.

 $\frac{\text{Facts } \text{ \# domain of } g = \text{image of } g^{1}}{\text{image of } g = \text{domain of } g^{1}}$

 $\# g (q^{-1}(x)) = x \quad \text{for all } x \quad \text{in domain of } q^{-1}$

Pg 3

How to ... find
$$f(x)$$

graph $f'(x)$
of a one-to-one function $f(x)$.
Same idea fir both Use the fact $f^{-1}(x) = y \iff f(y) = x$
How to find $f^{-1}(x)$:
Step 1. Write $y = f(x)$
Step 2. Solve for x
(if possible)
Step 3. Interchange $x \notin y$
to get $y = f^{-1}(x)$
How to graph f^{-1} :
 $f(x) = x^3 + 2$
Step 2. $y - 2 = x^3$
 $y - 2 = x$
 $y - 2 = x^3$
 $y - 2 = x$
 $y - 2 = x^3$
 $y - 2 = x$
 $y - 2 = x^3$
 $y - 2 = x$
 $y - 2 = x^3$
 $y - 2 = x$
 $y - 2 = x^3$
 $y - 2 = x$
 $y - 2 = x^3$
 $y - 2 = x$
 $y - 2 = x^3$
 $y - 2 = x$
 $y - 2 = x^3$
 $y - 2 = x$
 $y - 2 = x^3$
 $y - 2 = x$
 $y - 2 = x^3$
 $y - 2 = x$
 $y - 2 = x^3$
 $y - 2 = x^3$
 $y - 2 = x$
 $f(x) = \sqrt[3]{x-2}$
 $f(x) = \sqrt[3]{x-2}$
 $f(x) = \sqrt[3]{x-2}$
How to graph f^{-1} :
 $f(x) = x^3 + 2$ is $f(x) = \sqrt[3]{x-2}$
How to graph f^{-1} :
 $f(x) = x^3 + 2$ is $f(x) = \sqrt[3]{x-2}$
How to graph f^{-1} :
 $f(x) = x^3 + 2$ is $f(x) = \sqrt[3]{x-2}$
How to graph f^{-1} :
 $f(x) = x^3 + 2$ is $f(x) = \sqrt[3]{x-2}$
 $f(x) = x^3 + 2$ is $f(x) = \sqrt[3]{x-2}$
 $f(x) = x^3 + 2$ is $f(x) = \sqrt[3]{x-2}$
How to graph f^{-1} :
 $f(x) = x^3 + 2$ is $f(x) = \sqrt[3]{x-2}$
 $f(x) =$

How to find the derivative of f⁻¹ using implicit differentiation, by example

$$f(x) = 2x + \cos x$$
, Find $(f')(1)$

$$y = f'(x)$$
Apply f to both sides:

$$f(y) = f(f'(x))$$

$$f(y) = x$$

$$2 y + \cos y = x$$
Differentiate with respect to x:

$$\frac{d}{dy}(2y + \cos y) \frac{dy}{dx} = \frac{d}{dx} \times$$

$$(2 - \sin y) \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{2 - \sin y}$$
Substitute $y = f'(x)$:

$$\frac{dy}{dx} = \frac{1}{2 - \sin(f'(x))}$$
The derivative of f^{-1} at 1 is $\frac{1}{2}$

$$(f^{-1})'(x) = \frac{1}{2 - \sin(f'(x))} = \frac{1}{2 - \sin(g)} = \frac{1}{2}$$

$$f'(x) = \frac{1}{2 - \sin(f'(x))} = \frac{1}{2 - \sin(g)} = 1$$

$$2[2] + \cos[2] = 1$$

$$[2] = 0 \quad \text{works}$$
So $f''(1) = 0$

_