Ch 6 main idea

- Inverse functions
- exponential inverse
logarithmic
- Inverse trig functions

Sec 6.1 Inverse functions

Def $\cdot A$ function $g: A \longrightarrow \underbrace{B}$ is called one-to-one $(1-1)$ if...
all possible all possible
inputs outputs
(domain) (image in most textbooks - range in ours)
if $a_{1} \neq a_{2}$ then $g\left(a_{1}\right) \neq g\left(a_{2}\right)$
"g never takes on the same value twice"

- If you can find two inputs a_{1}, a_{2} where $g\left(a_{1}\right)=g\left(a_{2}\right)$, we say g is not one-to-one.
"g takes on the same value twice"

Ex 1

is one-to-one

is not one-to-one

Ex 2 Let $f(x)=x^{3}+2$. Do you think $f(x)$ is one-to-one?

Solution 1: Sketch $f(x)=x^{3}+2$

Horizontal line test:

- If no horizontal line intersects the graph $y=f(x)$ twice, then $f(x)$ is one-to-one.
- If a horizontal line intersects the graph $y=f(x)$ twice, then $f(x)$ is one-to-one.
Solution 2: (From prev page def: f is H means if $a_{1} \neq a_{2}$ then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$) If $a_{1} \neq a_{2}$ then $a_{1}^{3} \neq a_{2}^{3}$ so $f\left(a_{1}\right)=a_{1}^{3}+2 \neq a_{2}^{3}+2=f\left(a_{2}\right)$

Def If $g: A \longrightarrow B$ is one-to-one,
all possible all possible
inputs outputs of g
(domain of g) (image of g)
we can define the inverse function of g Read
"g inverse" $g^{-1}: B \longrightarrow A$
by $\quad g^{-1}(b)=a \quad$ if $g(a)=b$
"If g sends a to b, then g^{-1} sends b back to a^{\prime}

From Ex 1

Simply reverse the arrows

$$
\begin{array}{lll}
g(1)=2 & \text { means } & g^{-1}(2)=1 \\
g(2)=5 & \text { means } & g^{-1}(5)=2 \\
g(3)=7 & \text { means } & g^{-1}(7)=3
\end{array}
$$

Facts * domain of $g=$ image of \bar{g}^{-1}
image of $g=$ domain of g^{-1}

* $g^{-1}(g(x))=x$ for all x in domain of g

* $g\left(g^{-1}(x)\right)=x$ for all x in domain of g^{-1}

How to \cdots find $f^{-1}(x)$
graph $f^{-1}(x)$
of a one-to-one function $f(x)$.
Same idea for both Use the fact $f^{-1}(x)=y \Longleftrightarrow f(y)=x$

How to find $f^{-1}(x)$:
Step 1. Write $y=f(x)$
Step 2. Solve for x (if possible)

Step 3. Interchange x \& y to get $y=f^{-1}(x)$
(From Ex 2) $f(x)=x^{3}+2$
Step 1. Write $y=x^{3}+2$
Step 2. $y-2=x^{3}$

$$
\sqrt[3]{y-2}=x
$$

Step 3. $y=\sqrt[3]{x-2}$

$$
f^{-1}(x)=\sqrt[3]{x-2}
$$

The inverse function of $f(x)=x^{3}+2$ is $f^{-1}(x)=\sqrt[3]{x-2}$

How to graph f^{-1} :

- $f(a)=b$ iff $f^{-1}(b)=a$ means
point (a, b) is on the graph of f iff (b, a) is on the graph of f^{-1}
- To get from (a, b) to (b, a), we reflect about the line $y=x$
To get the graph of f^{-1},
 reflect the graph of f about the line $y=x$

Q: Is $f^{-1}(x)$ the same as $\frac{1}{f(x)}=(f(x))^{-1}$?
In general, no!

Thu If f is a one-to-one function which is continuous, then its inverse function f^{-1} is also continuous
Idea . Since f is continuous, graph of f has no break (it consists of one connected piece).

- The graph of f^{-1} is a reflection of the graph of f, so the graph of f^{-1} also has no break.
- So f^{-1} is also a continuous function.

Thu If f is a one-to-one function which is differentiable, then its inverse function f^{-1} is also differentiable, except when the tangent line is vertical.

How to find the derivative of f^{-1} using implicit differentiation, by example

Ex 3

$$
f(x)=2 x+\cos x . \text { Find }\left(f^{-1}\right)^{\prime}(1)
$$

Note: $f(x)$ is one-to-one because

$$
f^{\prime}(x)=2-\sin x>0 \quad(\text { since } \sin x>0)
$$

so $f(x)$ is increasing Chance no horizontal line can cross the graph twice)

$$
y=f^{-1}(x)
$$

Apply f to both sides:

$$
\begin{aligned}
f(y) & =f\left(f^{-1}(x)\right) \\
f(y) & =x \\
2 y+\cos y & =x
\end{aligned}
$$

Differentiate with respect to x :

$$
\begin{aligned}
\frac{d}{d y}(2 y+\cos y) \frac{d y}{d x} & =\frac{d}{d x} x \\
(2-\sin y) \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{2-\sin y}
\end{aligned}
$$

Substitute $y=f^{-1}(x)$:

$$
\frac{d y}{d x}=\frac{1}{2-\sin \left(f^{-1}(x)\right)}
$$

So $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{2-\sin \left(f^{-1}(x)\right)}$
The derivative of f^{-1} at 1 is $\frac{1}{2}$

$$
\left(f^{-1}\right)^{\prime}(1)=\frac{1}{2-\sin \left(f^{-1}(1)\right)}=\frac{1}{2-\sin (0)}=\frac{1}{2}
$$

$$
\begin{array}{ll}
f^{-1}(1)=? & f(?)=1 \\
& 2[?+\cos ?=1 \\
& \square ?=0 \text { works } \\
\text { so } f^{-1}(1)=0 &
\end{array}
$$

