12.4 The Cross Product

standard basis vectors

Thus any vector in V_3 can be expressed in terms of **i**, **j**, and **k**. For instance,

 $\langle 1, -2, 6 \rangle = \mathbf{i} - 2\mathbf{j} + 6\mathbf{k}$

A determinant of order 2 is defined by $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ E-9. $\begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} = -1(7) - 3(2) = 1$

Def of cross product
Let
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 Write $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ just a symbol
to help us
memorize
the def
Def $\begin{vmatrix} \mathbf{i} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$
 $\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$

EXAMPLE 1 If $\mathbf{a} = \langle 1, 3, 4 \rangle$ and $\mathbf{b} = \langle 2, 7, -5 \rangle$, then

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 4 \\ 2 & 7 & -5 \end{vmatrix}$$
$$= \begin{vmatrix} 3 & 4 \\ 7 & -5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} \mathbf{k}$$
$$= (-15 - 28)\mathbf{i} - (-5 - 8)\mathbf{j} + (7 - 6)\mathbf{k} = -43\mathbf{i} + 13\mathbf{j} + \mathbf{k}$$

8 Theorem The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

a×b

n

θ

(i) show that $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a}

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \left(\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k} \cdot \langle a_1, a_2, a_3 \rangle \left\langle \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k} \cdot \langle a_1, a_2, a_3 \rangle = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} a_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} a_2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} a_3 = a_1(a_2b_3 - a_3b_2) - a_2(a_1b_3 - a_3b_1) + a_3(a_1b_2 - a_2b_1) = a_1a_2b_3 - a_1b_2a_3 - a_1a_2b_3 + b_1a_2a_3 + a_1b_2a_3 - b_1a_2a_3 = 0$$

(Test your understanding)
(i) Show that
$$\bar{a} \times \bar{b}$$
 is orthogonal to \bar{b} by
computing $(\bar{a} \times \bar{b}) \cdot \bar{b} \stackrel{?}{=} 0$.

Geometric def of cross product

If θ is the angle between $\mathbf{\overline{a}}$ and $\mathbf{\overline{b}}$ (so $0 \le \theta \le \pi$), then

$$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$$
 \vec{n}
where \vec{n} is ...
(i) a unit vector (meaning $|\vec{n}| = 1$)
(ii) perpendicular to both \vec{a} and \vec{b}
(iii) the direction of \vec{n} is given by the right-hand rule

Fact

Two nonzero vectors \vec{a} and \vec{b} are parallel if and only if $\vec{a} \times \vec{b} = \vec{0}$

sin θ is 0 if and only if $\theta = 0$ or π

standard basis vectors

$\mathbf{j} \times \mathbf{i} = -\mathbf{k}$	$\mathbf{k} \times \mathbf{j} = -\mathbf{i}$	$\mathbf{i} \times \mathbf{k} = -\mathbf{j}$
	check	Check

11 Properties of the Cross Product

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} \quad \text{for all vectors } \mathbf{a}, \mathbf{b}$$

In general,

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \quad \text{Not associative !}$$

$$\mathbf{t} \times (\mathbf{i} \times \mathbf{j}) = \mathbf{i} \times \mathbf{k} = -\mathbf{j}$$

$$\mathbf{t} \cdot \mathbf{j} \times \mathbf{j} = \mathbf{0} \times \mathbf{j} = \mathbf{0}$$

Webwork Problem 5

If $\mathbf{a} = \langle 1, 3, 4 \rangle$ and $\mathbf{b} = \langle 2, 7, -5 \rangle$,

find a unit vector with positive first coordinate orthogonal to both \mathbf{a} and \mathbf{b} .

Solution
i)
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} 3 & 4 \\ 7 & -5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} \mathbf{k}$$

 $= (-15 - 28)\mathbf{i} - (-5 - 8)\mathbf{j} + (7 - 6)\mathbf{k} = -43\mathbf{i} + 13\mathbf{j} + \mathbf{k}$
i) To get a vector in opposite direction
as $\mathbf{a} \times \mathbf{b}$, do scalar multiplication
 $-1 \left(-43\mathbf{i} + 13\mathbf{j} + \mathbf{k}\right) = \langle 43, -13, -1 \rangle$

(iii) To get a unit vector, scalar multiply

$$\frac{1}{43}, -13, -1 > \text{ where } l = \sqrt{(t_3)^2 + (t_3)^2 + (t$$

Physical meaning of [āxb]

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .

webwork 6,7

EXAMPLE 4 Find the area of the triangle with vertices P(1, 4, 6), Q(-2, 5, -1), and R(1, -1, 1).

A

$$\overrightarrow{PQ} = (-2 - 1)\mathbf{i} + (5 - 4)\mathbf{j} + (-1 - 6)\mathbf{k} = -3\mathbf{i} + \mathbf{j} - 7\mathbf{k}$$

$$\overrightarrow{PR} = (1-1)\mathbf{i} + (-1-4)\mathbf{j} + (1-6)\mathbf{k} = -5\mathbf{j} - 5\mathbf{k}$$

We compute the cross product of these vectors:

$$\vec{PQ} \times \vec{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 1 & -7 \\ 0 & -5 & -5 \end{vmatrix}$$
$$= (-5 - 35)\mathbf{i} - (15 - 0)\mathbf{j} + (15 - 0)\mathbf{k} = -40\mathbf{i} - 15\mathbf{j} + 15\mathbf{k}$$
$$= (-5 - 35)\mathbf{i} - (15 - 0)\mathbf{j} + (15 - 0)\mathbf{k} = -40\mathbf{i} - 15\mathbf{j} + 15\mathbf{k}$$
$$= (ength)$$
$$|\vec{PQ} \times \vec{PR}| = \sqrt{(-40)^2 + (-15)^2 + 15^2} = 5\sqrt{82}$$

The area A of the triangle PQR is half the area of this parallelogram, that is, $\frac{5}{2}\sqrt{82}$.

Proof that the first definition
and the geometric definition
are equivalent
9 Theorem If
$$\theta$$
 is the angle between \mathbf{a} and \mathbf{b} (so $0 \le \theta \le \pi$), then
 $\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta$

PROOF From the definitions of the cross product and length of a vector, we have

$$|\mathbf{a} \times \mathbf{b}|^{2} = (a_{2}b_{3} - a_{3}b_{2})^{2} + (a_{3}b_{1} - a_{1}b_{3})^{2} + (a_{1}b_{2} - a_{2}b_{1})^{2}$$

$$= a_{2}^{2}b_{3}^{2} - 2a_{2}a_{3}b_{2}b_{3} + a_{3}^{2}b_{2}^{2} + a_{3}^{2}b_{1}^{2} - 2a_{1}a_{3}b_{1}b_{3} + a_{1}^{2}b_{3}^{2}$$

$$+ a_{1}^{2}b_{2}^{2} - 2a_{1}a_{2}b_{1}b_{2} + a_{2}^{2}b_{1}^{2}$$

$$= (a_{1}^{2} + a_{2}^{2} + a_{3}^{2})(b_{1}^{2} + b_{2}^{2} + b_{3}^{2}) - (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})^{2}$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2} - (\mathbf{a} \cdot \mathbf{b})^{2}$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2} - |\mathbf{a}|^{2}|\mathbf{b}|^{2}\cos^{2}\theta \quad \text{(by Theorem 12.3.3)}$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2}(1 - \cos^{2}\theta)$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2}\sin^{2}\theta$$

Taking square roots and observing that $\sqrt{\sin^2 \theta} = \sin \theta$ because $\sin \theta \ge 0$ when $0 \le \theta \le \pi$, we have

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$

Since a vector is completely determined by its magnitude and direction, we can now say that $\mathbf{a} \times \mathbf{b}$ is the vector that is perpendicular to both \mathbf{a} and \mathbf{b} , whose orientation is determined by the right-hand rule, and whose length is $|\mathbf{a}||\mathbf{b}|\sin\theta$. In fact, that is exactly how physicists *define* $\mathbf{a} \times \mathbf{b}$.