12.4 The Cross Product
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If a = (a,, a,, as), then we can write

a = (a, az,a3) ={a;,0,0) + (0, a>, 0) + (0, 0, as)

= a:(1,0,0) + a»(0, 1,0) + a3(0,0, 1)

@ a=a1i+a2j+a3k

Thus any vector in V; can be expressed in terms of i, j, and k. For instance,

(1,-2,6)=1i—2j + 6k
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EXAMPLE1 Ifa= (1,3,4)andb = (2, 7, —5), then
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axXb=|1 3 4
2 7 -5
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—(—15—28)i—(-5—8)j+ (7T—6)k = —43i + 13j + k
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Geometric def of cross ?roduc,t

If 6 is the angle betweena and b (so 0 < § < ), then
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standard basis vectors

i=(1,0,0) j=1+0,1,0) k=1(0,0,1)
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[11] Properties of the Cross Product
axXb=-bXa -For oll vectors QA
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Ifa=(1,3,4)andb = (2, 7, —5),

find a unit vector with positive first coordinate orthogonal to both a and b.

Solution
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—(—15-28)i— (-5 —8)j+ (7T—6)k=—43i + 13j + k
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The length of the cross product a X b is equal to the area of the parallelogram
determined by a and b.

Webwork 6,7

EXAMPLE 4 Find the area of the triangle with vertices P(1, 4, 6), (=2, 5, —1), and R(1, —1, 1).

PO=(-2-1i+(G-4j+ (-1 -6k=-3i+j—7k

&
TP 25 —>
/‘/P&KFR/ PR=(1-1i+(-1—-4)j+(1—-6k=-5j—5k
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We compute the cross product of these vectors:

i j k
—> —>
POXPR=|-3 1 -7
0 -5 -5

=(-5-35i-(15-0)j+(15-0k= —40i — 15j + 15k
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Area of proniletogmen i b5 bR 207 T (—15)7 + 157 = 5482

The area A of the triangle POR is half the area of this parallelogram, that is, %\/ 82. =
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[E] Theorem If 6 is the angle between a and b (so 0 <6 < ), then

axXb =|al||b|sin6

PROOF From the definitions of the cross product and length of a vector, we have
|a X b|* = (a:b; — a3by)* + (asby — aibs)* + (a\by — axb,)’?
= a}b?} — 2a,a3b,b; + aib? + aibi — 2a,a:b\b; + aib?
+ atbi — 2a\a,b\b> + a3 b}
= (af + ai + ai)(bi + b} + b?) — (a\b) + arb; + asbs)’
=|a’[b[* = (a - b)’
= |a|*|b|* — |a|*|b|*cos?d (by Theorem 12.3.3)
= |a[*|b[*(1 — cos?0)
= |a|*|b|*sin’0

Taking square roots and observing that y/sin’f = sin 6 because sin # = 0 when
0 <6 =< r, we have

|]a X b|=|a||b]|sin6

Since a vector is completely determined by its magnitude and direction, we can now
say that a X b is the vector that is perpendicular to both a and b, whose orientation is
determined by the right-hand rule, and whose length is [a||b|sin 6. In fact, that is

exactly how physicists define a X b.



