12.4 The Cross Product

Goal

Given two nonzero vectors \vec{a} and \vec{b} in $3 D$,
find a third nonzero vector \vec{c} that is perpendicular to both \vec{a} and \vec{b}.

standard basis vectors

$$
\begin{aligned}
& \mathbf{i}=\langle 1,0,0\rangle \quad \mathbf{j}=\langle 0,1,0\rangle \quad \mathbf{k}=\langle 0,0,1\rangle \\
& \text { length is } 1, \quad \text { direction : positive axis }
\end{aligned}
$$

If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, then we can write

Thus any vector in V_{3} can be expressed in terms of \mathbf{i}, \mathbf{j}, and \mathbf{k}. For instance,

$$
\langle 1,-2,6\rangle=\mathbf{i}-2 \mathbf{j}+6 \mathbf{k}
$$

A determinant of order 2 is defined by $\quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$
E-9. $\left|\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right|=1(7)-3(2)=1$

Def of cross product
Let $\begin{aligned} & \mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \\ & \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\end{aligned} \quad$ Write $\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right| \begin{gathered}\text { just a symbol } \\ \text { to help us } \\ \text { memorize } \\ \text { the def }\end{gathered}$

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{0} & a_{2} & a_{3} \\
b_{2} & b_{2} & b_{3}
\end{array}\right|\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \quad\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

$\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ll}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right| \mathbf{k}$

EXAMPLE 1 If $\mathbf{a}=\langle 1,3,4\rangle$ and $\mathbf{b}=\langle 2,7,-5\rangle$, then

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 3 & 4 \\
2 & 7 & -5
\end{array}\right| \\
& =\left|\begin{array}{rr}
3 & 4 \\
7 & -5
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
1 & 4 \\
2 & -5
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right| \mathbf{k} \\
& =(-15-28) \mathbf{i}-(-5-8) \mathbf{j}+(7-6) \mathbf{k}=-43 \mathbf{i}+13 \mathbf{j}+\mathbf{k}
\end{aligned}
$$

8 Theorem The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.
(i) show that $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a}

$$
\begin{aligned}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} & =\left(\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}\right) \cdot\left\langle a_{1}, a_{2}, a_{3}\right\rangle \\
& \langle | \begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\left|,-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|,\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|\right\rangle \cdot\left\langle a_{1}, a_{2}, a_{3}\right\rangle \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| a_{1}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| a_{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| a_{3} \\
& =a_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)-a_{2}\left(a_{1} b_{3}-a_{3} b_{1}\right)+a_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right) \\
& =a_{1} a_{2} b_{3}-a_{1} b_{2} a_{3}-a_{1} a_{2} b_{3}+b_{1} a_{2} a_{3}+a_{1} b_{2} a_{3}-b_{1} a_{2} a_{3} \\
& =0
\end{aligned}
$$

(Test your understanding)
(ii) Show that $\vec{a} \times \vec{b}$ is orthogonal to \vec{b} by computing $(\vec{a} \times \vec{b}) \cdot \vec{b} \stackrel{?}{=} 0$.

Geometric def of cross product

If θ is the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ (so $0 \leqslant \theta \leqslant \pi$), then

$$
\underset{\vec{a}}{\overrightarrow{\mathbf{a}}} \times \overrightarrow{\mathbf{b}}=\underbrace{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta}_{\text {scalar }} \underset{\text { unit vector }}{\vec{n}}
$$

where \vec{n} is ...
(i) a unit vector (meaning $|\vec{n}|=1$)
(ii) perpendicular to both \vec{a} and \vec{b}
(iii) the direction of \vec{n} is given by the right-hand rule

Pick your favorite method \& stick with it!

Fact
Two nonzero vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are parallel if and only if

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}
$$

Why?
$\sin \theta$ is 0 if and only if $\theta=0$ or π

standard basis vectors

$$
\begin{aligned}
& \begin{aligned}
\vec{j} \times \vec{i}=\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right| \vec{i}-\left|\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right| \vec{\jmath}+\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right| \vec{k}
\end{aligned} \\
& \mathbf{j} \times \mathbf{i}=-\mathbf{k} \quad \mathbf{k} \times \mathbf{j} \underset{\mathfrak{l}}{=}-\mathbf{i} \\
& \mathbf{i} \times \mathbf{k}=-\mathbf{j} \\
& \text { check } \\
& \text { check }
\end{aligned}
$$

11 Properties of the Cross Product

$$
\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a} \text { for all vectors } \vec{a}, \vec{b}
$$

In general,
$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \quad$ Not associative!

$$
\text { E. } \quad \mathbf{i} \times(\mathbf{i} \times \mathbf{j})=\mathbf{i} \times \mathbf{k}=-\mathbf{j}
$$

$$
(\mathbf{i} \times \mathbf{i}) \times \mathbf{j}=\mathbf{0} \times \mathbf{j}=\mathbf{0}
$$

Webwork Problem 5
If $\mathbf{a}=\langle 1,3,4\rangle$ and $\mathbf{b}=\langle 2,7,-5\rangle$,
find a unit vector with positive first coordinate orthogonal to both \mathbf{a} and \mathbf{b}.
Solution
(i) $\mathbf{a} \times \mathbf{b}=\left|\begin{array}{rr}3 & 4 \\ 7 & -5\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}1 & 4 \\ 2 & -5\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right| \mathbf{k}$

$$
=(-15-28) \mathbf{i}-(-5-8) \mathbf{j}+(7-6) \mathbf{k}=-43 \mathbf{i}+13 \mathbf{j}+\mathbf{k}
$$

(ii) To get a vector in opposite direction as $\vec{a} \times \vec{b}$, do scalar multiplication

$$
-1(-43 \mathbf{i}+13 \mathbf{j}+\mathbf{k})=\langle 43,-13,-1\rangle
$$

(iii) To get a unit vector, scalar multiply

$$
\frac{1}{l}\langle 43,-13,-1\rangle \text { where } l=\underbrace{\sqrt{(43)^{2}+\left((3)^{2}+(-1)^{2}\right.}}_{\text {length of } \vec{a} \times \vec{b}}
$$

Physical meaning of $|\vec{a} \times \vec{b}|$
 $\sin \theta=\frac{o p p}{|\vec{b}|}$
\Rightarrow

Area of parallelogram is (height). (base)

$$
=|\vec{b}| \sin \theta \cdot|\vec{a}|
$$

Since $\vec{a} \times \vec{b}=\underbrace{|\vec{a}||\vec{b}| \sin \theta}_{\vec{a} \times \vec{b}} \underset{\begin{array}{c}\vec{n} \\ \text { unit } \\ \text { vector }\end{array}}{\substack{\text {, we have... } \\ \text {, we }}}$

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b}.

Webwork
 6,7

EXAMPLE 4 Find the area of the triangle with vertices $P(1,4,6), Q(-2,5,-1)$, and $R(1,-1,1)$.

$$
\begin{aligned}
& \overrightarrow{P Q}=(-2-1) \mathbf{i}+(5-4) \mathbf{j}+(-1-6) \mathbf{k}=-3 \mathbf{i}+\mathbf{j}-7 \mathbf{k} \\
& \overrightarrow{P R}=(1-1) \mathbf{i}+(-1-4) \mathbf{j}+(1-6) \mathbf{k}=-5 \mathbf{j}-5 \mathbf{k}
\end{aligned} \quad \begin{aligned}
\overrightarrow{P Q} \times \overrightarrow{P R} \mid \quad \text { We compute the cross product of these vectors: }
\end{aligned} \quad \begin{aligned}
\overrightarrow{P Q} \times \overrightarrow{P R} & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 1 & -7 \\
0 & -5 & -5
\end{array}\right| \\
& =(-5-35) \mathbf{i}-(15-0) \mathbf{j}+(15-0) \mathbf{k}=-40 \mathbf{i}-15 \mathbf{j}+15 \mathbf{k}
\end{aligned}
$$

Area of parallelogram is $|\overrightarrow{P Q} \times \overrightarrow{P R}| \stackrel{\substack{\text { length } \\=\\ \text { formula }}}{(-40)^{2}+(-15)^{2}+15^{2}}=5 \sqrt{82}$
The area A of the triangle $P Q R$ is half the area of this parallelogram, that is, $\frac{5}{2} \sqrt{82}$.

Proof that the first definition and the geometric definition

are equivalent

9 Theorem If θ is the angle between \mathbf{a} and \mathbf{b} (so $0 \leqslant \theta \leqslant \pi$), then

$$
\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

PROOF From the definitions of the cross product and length of a vector, we have

$$
\begin{align*}
|\mathbf{a} \times \mathbf{b}|^{2}= & \left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \\
= & a_{2}^{2} b_{3}^{2}-2 a_{2} a_{3} b_{2} b_{3}+a_{3}^{2} b_{2}^{2}+a_{3}^{2} b_{1}^{2}-2 a_{1} a_{3} b_{1} b_{3}+a_{1}^{2} b_{3}^{2} \\
& \quad+a_{1}^{2} b_{2}^{2}-2 a_{1} a_{2} b_{1} b_{2}+a_{2}^{2} b_{1}^{2} \\
= & \left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2} \\
= & |\mathbf{a}|^{2}|\mathbf{b}|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2} \\
= & |\mathbf{a}|^{2}|\mathbf{b}|^{2}-|\mathbf{a}|^{2}|\mathbf{b}|^{2} \cos ^{2} \theta \quad \text { (by Theorem 12.3.3) } \tag{byTheorem12.3.3}\\
= & |\mathbf{a}|^{2}|\mathbf{b}|^{2}\left(1-\cos ^{2} \theta\right) \\
= & |\mathbf{a}|^{2}|\mathbf{b}|^{2} \sin ^{2} \theta
\end{align*}
$$

Taking square roots and observing that $\sqrt{\sin ^{2} \theta}=\sin \theta$ because $\sin \theta \geqslant 0$ when $0 \leqslant \theta \leqslant \pi$, we have

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

Since a vector is completely determined by its magnitude and direction, we can now say that $\mathbf{a} \times \mathbf{b}$ is the vector that is perpendicular to both \mathbf{a} and \mathbf{b}, whose orientation is determined by the right-hand rule, and whose length is $|\mathbf{a} \| \mathbf{b}| \sin \theta$. In fact, that is exactly how physicists define $\mathbf{a} \times \mathbf{b}$.

