Recall Sec 12.2
Lee 12.3 pg 1

- Sum of two vectors

- Difference of two vectors

- multiplying a vector by a number/scalar

- Can we "multiply" two vectors? dot product: "product" of two vectors is a number cross product: "product" of two vectors is a vector
12.3 The Dot Product (also called the scalar product or inner product)
1 Definition
If $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

If $\vec{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}\right\rangle$, then $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}$
Note $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} \quad$ (The order of the vectors doesn't matter)

EXAMPLE

$$
\overline{\mathbf{a} \cdot \mathbf{a}}=|\mathbf{a}|^{2}
$$

$$
\left.\begin{array}{rl}
\begin{array}{r}
\langle 2,4\rangle \cdot\langle 3,-1\rangle
\end{array} & =\quad 2(3)+4(-1)=2 \\
\langle-1,7,4\rangle \cdot\left\langle 6,2,-\frac{1}{2}\right\rangle & = \\
(-1)(6)+7(2)+4\left(-\frac{1}{2}\right)=6
\end{array}\right) \vec{a} \cdot \vec{a} \stackrel{\text { def }}{=}\left\langle a_{1}, a_{2}\right\rangle \cdot\left\langle a_{1}, a_{2}\right\rangle=a_{1}^{2}+a_{2}^{2} .
$$

Fact

Law of Cosines
$S=$ Distance between R and T

$$
\begin{aligned}
& =\sqrt{(t-r \cos \theta)^{2}+(0-r \sin \theta)^{2}} \\
& s^{2}=(t-r \cos \theta)^{2}+r^{2}(\sin \theta)^{2} \\
& s^{2}=t^{2}-2 t r \cos \theta+r^{2}(\cos \theta)^{2}+r^{2}(\sin \theta)^{2} \\
& s^{2}=t^{2}+r^{2}-2 t r \cos \theta \quad\left(\text { since } \cos ^{2} \theta+\sin ^{2} \theta=1\right)
\end{aligned}
$$

"Law of Cosines"

$$
(\text { side 1 })^{2}=(\text { side 2 })^{2}+(\text { side 3 })^{2}-2(\text { side 1 })(\text { side 2 }) \cos \theta
$$

Geometric meaning of the dot product
By law of cosines,

Let $\vec{a}=\left\langle a_{1}, a_{2}\right\rangle$

$$
\begin{gathered}
\vec{b}=\left\langle b_{1}, b_{2}\right\rangle \\
\vec{a}-\vec{b}=\left\langle a_{1}-b_{1}, a_{2}-b_{2}\right\rangle \\
\vec{b} \uparrow_{\vec{a}}^{\vec{a}-\vec{b}}
\end{gathered}
$$

(1)

$$
|\stackrel{\rightharpoonup}{a}-\vec{b}|^{2}=|\stackrel{\rightharpoonup}{a}|^{2}+|\stackrel{\rightharpoonup}{b}|^{2}-2|\vec{a}||\stackrel{\rightharpoonup}{b}| \cos \theta
$$

(2)

$$
\begin{aligned}
|\vec{a}-\vec{b}|^{2} & =\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2} \\
& =a_{1}^{2}-2 a_{1} b_{1}+b_{1}^{2}+a_{2}^{2}-2 a_{2} b_{2}+b_{2}^{2} \\
& =\underbrace{a_{1}^{2}+a_{2}^{2}}+\underbrace{b_{1}^{2}+b_{2}^{2}}-2 \underbrace{\left(a_{1} b_{1}+a_{2} b_{2}\right.}_{\text {dot product }}) \\
& =|\vec{a}|^{2}
\end{aligned}
$$

(1) $|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos \theta$
(2) $|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}$

$$
0=-2|\vec{a}||\bar{b}| \cos \theta+2 \vec{a} \cdot \vec{b}
$$

So $\quad \vec{a} \cdot \stackrel{\rightharpoonup}{b}=|\vec{a}||\stackrel{\rightharpoonup}{b}| \cos \theta$

Geometric meaning of the dot product

3 Theorem If θ is the angle between the vectors \mathbf{a} and \mathbf{b}, then

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

$$
\vec{b} \uparrow_{\theta \xrightarrow[\vec{a}]{ }}
$$

6 Corollary If θ is the angle between the nonzero vectors \mathbf{a} and \mathbf{b}, then

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

positive when

$$
0 \leqslant \theta<\frac{\pi}{2}
$$

$\cos (\theta)$ is ... 0 when $\theta=\frac{\pi}{2}$ negative when $\quad \frac{\pi}{2}<\theta \leqslant \pi$

So we can determine acute/right/obtuse angle by computing $\vec{a} \cdot \vec{b}$

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}>0 \\
& \theta \text { acute }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=0 \\
& \theta=\pi / 2
\end{aligned}
$$

$$
\mathbf{a} \cdot \mathbf{b}<0
$$

θ obtuse
Two vectors \vec{a}, \vec{b} are or thogonal or perpendicular if $\vec{a} \cdot \vec{b}=0$

Webwork Prob 1

$$
\langle 2,4\rangle \cdot\langle 3,-1\rangle=2(3)+4(-1)=2
$$

so the angle between $\langle 2,4\rangle$ and $\langle 3,-1\rangle$ is acute

Projections
The Vector projection of \vec{b} onto \vec{a} is the vector $\operatorname{proj}_{\vec{a}} \vec{b}$

when the angle θ between \vec{a} and \vec{b} is acute (smaller than $\frac{\pi}{2}$)

when the angle θ between \vec{a} and \vec{b} is obtuse
(bigger than $\frac{\pi}{2}$)

Think of this vector $\operatorname{proj}_{\vec{a}} \vec{b}$ as a shadow of \vec{b}
The scalar projection of \vec{b} onto \vec{a} (denoted comp $\vec{a} \vec{b}$) or component of \vec{b} along \vec{a}
is the length of $\operatorname{proj} \vec{a} \vec{b}$ if θ is less than $\frac{\pi}{2}$
(-1) times length of $\operatorname{proj}_{\vec{a}} \vec{b}$ if θ is bigger than $\frac{\pi}{2}$
Scalar projection of \mathbf{b} onto $\mathbf{a}: \quad \operatorname{comp}_{\mathbf{a}} \mathbf{b}=|b| \cos \theta \quad$ why?
Since $\vec{a} \cdot \vec{b}=|a||b| \cos \theta$,
$\operatorname{comp}_{\vec{a}} \vec{b}$ is we have $\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} \quad \swarrow \quad a_{\text {number }}$

Vector projection of \mathbf{b} onto $\mathbf{a}: \quad \operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \underbrace{\frac{\mathbf{a}}{|\mathbf{a}|}}=|\stackrel{\rightharpoonup}{b}| \cos \theta \frac{\vec{a}}{|\vec{a}|}$
pro \vec{b} is τ $\underset{\substack{\operatorname{proj}_{\vec{a}} \\ a \\ \text { vector }}}{ }$
(± 1) length comp $\tilde{\bar{a}}_{\bar{b}}$ unit vector $\begin{gathered}\text { in the direction } \\ \text { of } \bar{a}\end{gathered}$ of \vec{a}

