Def (vector)

A vector is a quantity with length (magnitude) and direction.

- The vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are equivalent.
- The zero vector, denoted \mathbf{O} or $\overrightarrow{0}$. has length zero and no direction.

Def (Vector addition)

To get the vector $\vec{u}+\vec{v}$,
put the initial point of v at the terminal point of u.

Fact:

$$
\vec{u}+\vec{v}=\vec{v}+\vec{u}
$$

to the terminal point of \vec{v}

Vector
subtraction:

Def (Scalar multiplication)
Def A scalar is a number
Def If \vec{V} is a vector and c is a number, the scalar multiple $c \vec{V}$ is a vector with...

- length $|c|$ times length of \vec{V}
- (if $c>0$) same direction as \vec{V}
(if $c<0$) opposite direction to \vec{v}
- If $c=0$ or $\vec{v}=\overrightarrow{0}$, then $c \vec{v}=\overrightarrow{0}$.

Scalar multiples of \vec{V}

The numbers $1,2, \frac{1}{2},-1,-1.5$ "scale" the vector \vec{V}. That's why they are called scalars.

Note: Two vectors are parallel (having the same or opposite direction) if they are scalar multiples of one another.

Components
Place the initial point of a vector \vec{a} at the origin.
Then the terminal point of \vec{a} has coordinates

$$
\left(a_{1}, a_{2}\right) \text { or }\left(a_{1}, a_{2}, a_{3}\right) \text {. }
$$

These coordinates are called the components of a and we write

$$
\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle \quad \text { or } \quad \mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle
$$

We use the notation $\left\langle a_{1}, a_{2}\right\rangle$ for the ordered pair that refers to a vector so as not to confuse it with the ordered pair $\left(a_{1}, a_{2}\right)$ that refers to a point in the plane.

$\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$

$\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$

Webwork Problems 1, 2, 3,4
Find a vector with representation given by

Length of a vector

$\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$

$\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$

The length of the two-dimensional vector $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ is

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}
$$

The length of the three-dimensional vector $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

Webwork Problem II

Find the length of the vector $\mathbf{v}=\langle 10,6,3\rangle$. $\|\mathbf{v}\|=$ \qquad $\sqrt{10 \cdot 10+6 \cdot 6+3 \cdot 3}=\sqrt{145}$.

Webwork Problems 16, 17
Let $\vec{a}=\langle-10,9,10\rangle$.

- Find a unit vector in the same direction as \vec{a}
- Find a vector that has the same direction as \vec{a} but has length 3 .

Answer

The given vector has length $|\langle-10,9,10\rangle|=\sqrt{(-10)^{2}+9^{2}+10^{2}}=\sqrt{281}$, so a unit vector in the directimon of $\langle-10,9,10\rangle$ is $\mathbf{u}=\frac{1}{\sqrt{281}}\langle-10,9,10\rangle$.
A vector in the same direction but with length 3 is
$3 \mathbf{u}=\frac{3}{\sqrt{281}}\langle-10,9,10\rangle=\left\langle\frac{-30}{\sqrt{281}}, \frac{27}{\sqrt{281}}, \frac{30}{\sqrt{281}}\right\rangle$.

Adding vectors using algebra Lecture 12.2 pg

If $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}\right\rangle$, then

$$
\mathbf{a}+\mathbf{b}=\langle a_{1}+b_{1}, \underbrace{a_{2}+b_{2}}\rangle
$$

Add each component of \vec{a} and \vec{b}

If $\mathbf{a}=\langle 4,0,3\rangle$ and $\mathbf{b}=\langle-2,1,5\rangle$,

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =\langle 4,0,3\rangle+\langle-2,1,5\rangle \\
& =\langle 4+(-2), 0+1,3+5\rangle=\langle 2,1,8\rangle
\end{aligned}
$$

Scaling vector using algebra

$$
c \mathbf{a}=\left\langle c a_{1}, c a_{2}\right\rangle
$$

Multiply each Component of \vec{a} by c

$$
\begin{aligned}
& \text { If } \mathbf{a}=\langle 4,0,3\rangle \text { and } \mathbf{b}=\langle-2,1,5\rangle \\
& \begin{aligned}
2 \mathbf{a}+5 \mathbf{b} & =2\langle 4,0,3\rangle+5\langle-2,1,5\rangle \\
& =\langle 8,0,6\rangle+\langle-10,5,25\rangle=\langle-2,5,31\rangle
\end{aligned}
\end{aligned}
$$

Webwork Problem 13

Let $\bar{u}=\langle 1,1\rangle, \bar{v}=\langle 5,-1\rangle$, and $\bar{w}=\langle-4,0\rangle$. Find the vector \bar{x} that satisfies

$$
10 \bar{u}-\bar{v}+\bar{x}=8 \bar{x}+\bar{w} .
$$

Answer:

$$
\begin{aligned}
10 \vec{u}-\vec{v}-\vec{w} & =7 \vec{x} \\
\frac{1}{7}(10 \vec{u}-\vec{v}-\vec{w}) & =\vec{x}
\end{aligned}
$$

$$
\begin{aligned}
\vec{x} & =\frac{1}{7}(\langle 10.1,10.1\rangle-\langle 5,-1\rangle-\langle-4,0\rangle) \\
& =\frac{1}{7}(\langle 10-5+4,10+1\rangle) \\
& =\frac{1}{7}\langle 9,11\rangle \\
& =\left\langle\frac{9}{7}, \frac{11}{7}\right\rangle
\end{aligned}
$$

