Part I: 3D space
To represent a point in 3D, draw 3 coordinate axes.

Def: The $x y$-plane is the
(horizontal) plane containing the x-axis and the y-axis

The three planes divide space into eight octants.

The first octant is determined by the positive axes.

Part I: 3D space
To find the point (a, b, c) in 3D space, start from the origin 0

Move a units along the x-axis
Move b units parallel to the y-axis
Move c units parallel to the z-axis

Examples: point $(-4,3,-5)$

$$
\text { point }(3,-2,-6)
$$

Part II: Planes
EXAMPLE 1 What surfaces in \mathbb{R}^{3} are represented by the following equations?
(a) $z=3$
(b) $y=5$

The set of points $(x, y, 3)$ where x and y can be

The set of all points (x, y, z) in $3 D$ space where $y=5$ and x, z can be any number. Parallel to the $x z-p l a n e$ any number

(a) $z=3$, a plane in \mathbb{R}^{3} (the "left wall")

$$
\text { (b) } y=5 \text {, a plane in } \mathbb{R}^{3}
$$

Parallel to the $x y$-plane (the horizontal "floor")

Webwork Problem 2:
An equation for the plane parallel to the xz-plane and passing through the point $(2,5,8)$ is $y=5 \quad x, z$ can be any number

If we replace "xz-plane" with "yz-plane", the

(b) $y=5$, a plane in \mathbb{R}^{3}

Part II: Planes

EXAMPLE 3 Describe and sketch the surface in \mathbb{R}^{3} represented by the equation $y=x$.
Go to geogebra.org/3d and type $y=x$

The surface is the set of points $(x, y, z)=(x, x, z)$ where x and z are any numbers.

We get a plane containing:

* the z-axis (since $(0,0, z)$ is in the surface for any z)
* the line $y=x, z=0$

Step 1: Sketch

Step 2: Draw on the floor:

Step 3: Allows any value for z to get an "infinite wall"

Plane $y=x$

Part III: Distance

Distance Formula in Three Dimensions The distance $\left|P_{1} P_{2}\right|$ between the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Why ?

- Apply Pythagorean Theorem to find $\left|P_{1} B\right|$
- Apply it again for

EXAMPLE 4 The distance from the point $P(2,-1,7)$ to the point $Q(1,-3,5)$ is

$$
|P Q|=\sqrt{(1-2)^{2}+(-3+1)^{2}+(5-7)^{2}}=\sqrt{1+4+4}=3
$$

Webwork Problem 1:
Find the distance from $(-4,3,-5)$ to the $x y$-plane.
 Answer: 5
distance The $x y$-plane is the horizontal " f floor". The distance is the difference between $z=0$ and $z=-5$

Find the distance from $(-4,3,-5)$ to the y-axis.

Answer:
The point on the y-axis closest to $(-4,3,-5)$ is $(0,3,0)$.

$$
\begin{aligned}
\text { Distance }: & \sqrt{(-4-0)^{2}+(3-3)^{2}+(-5-0)^{2}} \\
= & \sqrt{16+25} \\
= & \sqrt{41}
\end{aligned}
$$

Part IV: Spheres

The set of points of distance r from (h, k, l) can be described by equation

$$
r=\sqrt{(x-h)^{2}+(y-k)^{2}+(z-l)^{2}} \text {, so } \ldots
$$

Equation of a Sphere An equation of a sphere with center $C(h, k, l)$ and radius r is

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}
$$

In particular, if the center is the origin O, then an equation of the sphere is

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

Webwork Problem 6
Find the center and radius of the sphere

$$
x^{2}+y^{2}+z^{2}+4 x-6 y+2 z+6=0
$$

Answer: $\quad x^{2}+4 x+y^{2}-6 y+z^{2}+2 z=-6$
"Complete squares" $x^{2}+4 x+2^{2}+y^{2}-6 y+3^{2}+z^{2}+2 z+1^{2}=-6+4+9+1$ $(x+2)^{2}+(y-3)^{2}+(z+1)^{2}=8$

Comparing this equation with the standard form, we see that it is the equation of a sphere with center $(-2,3,-1)$ and radius $\sqrt{8}=2 \sqrt{2}$.

Webwork Problem 4 (a)
Consider the sphere $(x-3)^{2}+(y-5)^{2}+(z-4)^{2}=25$
(a) Does the sphere intersect each of the following planes at zero points, at one point, at two points, in a line, or in a circle?
i. The sphere intersects the yz-plane ?

- $y z$-plane is the collection of points $(0, y, z)$

- Set $x=0:(-3)^{2}+(y-5)^{3}+(z-4)^{2}=25$

$$
\left.(y-5)^{5}+(2-4)^{2}=16\right\} \text { a circle }
$$

The sphere intersects the $y z$-plane in a circle
ii. The sphere intersects the xz-plane ?

Answer: The $x z$-plane is the set of points $(x, 0,2)$ for any x, z.

$$
\text { Set: } \begin{aligned}
& (x-3)^{2}+(-5)^{2}+(2-4)^{2}=25 \\
& (x-3)^{2}+(2-4)^{2}=0
\end{aligned}
$$

This equation is satisfied for $x=3, z=4$
So the sphere intersects the $x z$-plane at exactly one point. This point is $(x=3, y=0, z=4)$

Webwork Problem 4 (b)
Consider the sphere $(x-3)^{2}+(y-5)^{2}+(z-4)^{2}=25$
(b) Does the sphere intersect each of the following coordinate axes at zero points, at one point, at two points, or in a line?

The sphere intersects the z -axis ?

FIGURE 1
Coordinate axes

The z-axis $\hat{\jmath}^{z}$ is the set of points $(0,0,2), z$ any number

Set $x=y=0:(-3)^{2}+(-5)^{2}+(z-4)^{2}=25$

$$
(z-4)^{2}=-9
$$

No z satisfies this equation
The sphere does not intersect the z-axis

