LECTURE 11.8: POWER SERIES

A power series is a series of the form called <u>coefficients</u> of the power series $\sum_{n=0}^{\infty} c_n^{b} (x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots \qquad \text{where } \{c_0, c_1, c_2, \dots\}$ is a sequence of numbers

The number a is called the <u>center</u> of the series.

Examples:

1.
$$\sum_{n=0}^{\infty} 2(x-1)^n = 2 + 2(x-1) + 2(x-1)^2 + \dots$$

Center coefficients
1 Cn= 2

3.
$$\sum_{n=0}^{\infty} \frac{(x+2)^n}{5^n} = 1 + \frac{x+2}{5} + \frac{(x+2)^2}{25} + \dots \qquad -2 \qquad C_n = \frac{1}{5^n}$$

page 2

CONVERGENCE EXAMPLE

Example: Consider the power series

$$\sum_{n=0}^{\infty} \frac{x^n}{3^n} = 1 + \frac{x}{3} + \frac{x^2}{9} + \dots$$

where plugging in different values of x gives different series. For instance,

Input
$$x = -1$$
:
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} = 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \cdots$$
 is a convergent geometric
series $(r = -\frac{1}{3})$, or
use Ratio Test
Input $x = 4$:
$$\sum_{n=0}^{\infty} \frac{(4)^n}{3^n} = 1 + \frac{4}{3} + \frac{16}{9} + \frac{64}{27} + \cdots$$
 is a divergent geometric
series $(r = \frac{4}{3})$, or
use Ratio Test, or
use Ratio Test, or
use Ratio Test, or
use Ratio Test.
A. 0 B. 1 C. $\frac{1}{3}$ D. $3 = \sum_{n=0}^{\infty} \frac{x^n}{3^n}$ so the center is 0.

Goal: For what interval of x-values does this power series converge? This interval is called the interval of convergence.

New vocab: the collection of inputs for which a power series converges.

(a-R, a+R] or

[a-R, a+R) or

page 4

[a-R, a+R]

THEOREM

For a given power series

$$\sum_{n=0}^{\infty} c_n (x-a)^n$$

there are only three possibilities

- 1. The series converges only when x = a
- 2. The series converges for all \times
- 3. There is a positive number R such that ...
 - the series converges if |x a| < R and
 - the series diverges if |x a| > R.

Note: if |x - a| = R, it could either converge or diverge. You must check!

What are the intervals of convergence in each of these situations?

- interval is jay 1. converges for all x in [a, a]
- 2. converges for all x in $(-\infty, \infty)$ interval is $(-\infty, \infty)$
- 3. converges for all |x-a| < R i.e. for all x in (a-R, a+R). Interval may be (a-R, a+R) or
 - This might not be the interval of convergence!
 - Check whether x = a R is in the interval
 - Check whether x = a + R is in the interval

RADIUS OF CONVERGENCE

Memorize The radius of convergence is the distance from the center of the series to new one of the endpoints of the interval of convergence. vocab

> For our three possible types of intervals of convergence, the radii of convergence are as follows:

- 1. interval [a, a] means radius is 0
- 2. interval $(-\infty, \infty)$ means radius is ∞
- 3. interval (a R, a + R) or (a R, a + R] or [a R, a + R) or [a-R, a+R] means radius is <u>R</u>

Example: What is the radius of convergence for

$$\sum_{n=0}^{\infty} \frac{x^n}{3^n} = 1 + \frac{x}{3} + \frac{x^2}{9} + \dots$$

Inswer:
$$\sum_{n=0}^{\infty} \left(\frac{x}{3}\right)^n$$
 is a geometric series with ratio $\frac{x}{3}$
So this series converges iff $\left|\frac{x}{3}\right| < 1 \iff |x| < 3$
 $\iff -3 < x < 3$
Distance between the center (0) to one of the endpoints (3) is $R=3$

(Webwork Prob 8, 16)

Use ideas about geometric series to find the interval of convergence and the radius of convergence for

$$\sum_{n=0}^{\infty} \frac{(x+2)^n}{5^n} = 1 + \frac{x+2}{5} + \frac{(x+2)^2}{25} + \dots$$

Answer:

$$\sum_{n=0}^{\infty} \frac{x+2}{5}^{n}$$
 is a geometric series with ratio $\frac{x+2}{5}$
So the series converges iff $\frac{|x+2|}{5} < 1 \iff |x+2| < 5$
 $-5 < x+2 < 5$
 $-5 < x < 25-2$
 $-7 < x < 3$
Interval of convergence is $(-7,3)$
Radius of convergence is $R=5$ (distance between center, 2, and an endpoint)

page 6

(WEBWORK PROB 8, 16, CONTINUED)

Use ideas about geometric series to find the interval of convergence and the radius of convergence for

OR, use Ratio Test:
$$\sum_{n=0}^{\infty} \frac{(x+2)^n}{5^n} = 1 + \frac{x+2}{5} + \frac{(x+2)^2}{25} + \dots$$

If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then $\sum |a_n|$ is convergent
If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum a_n$ is divergent.
Let $a_n = \left(\frac{x+2}{5} \right)^n \quad \frac{a_{n+1}}{a_n} = \left(\frac{(x+2)^{n+1}}{5^n} \cdot \frac{5^n}{(x+2)^n} \cdot \frac{5^n}{5^{n+1}} = \frac{x+2}{5}$
so $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x+2}{5} \right| = \left| \frac{x+2}{5} \right|$ If $\left| \frac{x+2}{5} \right| < 1 \iff |x+2| > 5$, the series converges
If $\left| \frac{x+2}{5} \right| > 1 \iff |x+2| > 5$, the series diverges.

If
$$x+2=5$$
 or $x+2=-5$, we have $\sum_{n=0}^{\infty} 1$ and $\sum_{n=0}^{\infty} (-1)^n$ which are divergent.

WEBWORK PROB 5

Use the Ratio Test on the power series
$$\sum_{n=1}^{\infty} \frac{5^n (x-4)^n}{\sqrt{n}}$$
Let $a_n = \frac{5^n (x-4)^n}{\sqrt{n}}$

$$\frac{4_{n+1}}{4_n} = \frac{5^{n+1} (x-4)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{4^n}}{5^n (x-4)^n}$$

$$= 5 \frac{\sqrt{n}}{\sqrt{n+1}} (x-4)$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|_{n=1}^{2} \frac{\sqrt{n}}{\sqrt{n+1}} (x-4) \right|$$

$$= \left| 5(x-4) \right| \frac{1}{5^n (x-4)^n} \frac{\sqrt{n}}{\sqrt{n+1}}$$

$$= \left| 5 (x-4) \right| \frac{1}{5^n (x-4)^n} \frac{\sqrt{n}}{\sqrt{n+1}} = 1$$
By R_n+in Test, $\sum a_n$ convertiges when $\left| 5 (x-4) \right| < 1$
 $\left| x-4 \right| < \frac{1}{5}$
 $= \frac{5^n (x-4)^n}{\sqrt{n}} = 1 + (x-4) + \frac{(x-4)^2}{2} + \dots$
We BWORK PROB 5 CONTINUED
$$\sum_{n=1}^{\infty} \frac{5^n (x-4)^n}{\sqrt{n}} = 1 + (x-4) + \frac{(x-4)^2}{2} + \dots$$
What is the center of the series? A. 0 (B. 4) C. -4
What is the radius of convergence? We know $\prod \text{ must include } \left(\frac{4}{4} - \frac{1}{5}, \frac{4}{7} + \frac{1}{5} \right)$
(here $x = 4 - \frac{1}{5}$: $\sum_{n=1}^{\infty} \frac{5^n (\frac{1}{\sqrt{n}})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(1)^n}{\sqrt{n}}$ converges by Alternating Series Test (so \mathbb{T} includes $x = 4 - \frac{1}{5}$)
Check $x = 4 + \frac{1}{5}$: $\sum_{n=1}^{\infty} \frac{5^n (\frac{1}{\sqrt{n}})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(1)^n}{\sqrt{n}}$ is the interval of convergence

Think Factorial
$$n_{n}^{1}$$
 grows faster then
exponential function (some number)
so l expect $\sum k_{n+1}^{n}$ converges for all x
(WEBWORK PROB 10)
Find the radius and interval of convergence for $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ (let $q_{n} = \frac{x^{n}}{n!}$
the fatio Test: $\frac{A_{n+1}}{a_{n}} = \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}} = \frac{1}{n+1} \cdot x$
 $\int_{n \to \infty}^{n} \left| \frac{d_{n+1}}{d_{n}} \right| = \lim_{n \to \infty} \left| \frac{x}{n+1} \right| = |x| \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1$ for any number x
So by Katio Test; $\sum_{n \in 0}^{\infty} \frac{x^{n}}{n!!} = \operatorname{convergence} for this series? The context is 0.
A. 0 B. 1 C. 10 D. ∞
The factorial $n_{n}^{1} = (x+1)! (x+2)^{n+1}$
 $x = \lim_{n \to \infty} |\frac{1}{n!} (x+2)^{n} + \frac{1}{n!} + \frac{1}{n!} + \frac{1}{n!} + \frac{1}{n!} = \frac{1}{n!} + \frac{1}{n!}$$

What is the radius of convergence of this series?

A. 0 **B.** 1 **C.** 8 **D.** ∞

page 11

Additional Practice $_{\mathcal{I}}$

Find the radius of convergence and the interval of convergence for

$$\sum_{n=0}^{\infty} 9^n (x-2)^{2n} = \sum_{n=0}^{\infty} \left[9 (x-2)^2 \right]^n$$

using geometric series.

This is a geometric series with ratio $9(x-2)^2$ So it converges if and only if $|9(x-2)^2| < 1$ $\left|\left(x-2\right)^{2}\right| < \frac{1}{9}$ $|x-2| < \frac{1}{3}$ $-\frac{1}{3} < \times -2 < \frac{1}{3}$ $2 - \frac{1}{2} < \times < 2 + \frac{1}{2}$ $I = \left(\left| \frac{2}{3}, 2\frac{1}{3} \right) \right)$ $R = \frac{1}{3}$ What is the radius of convergence of this series? **B.** $\frac{1}{3}$ **C.** $\frac{1}{9}$ **D.** $\frac{1}{81}$ **A.** 1 Since the center of this power series is O, this means the radius of convergence, R, is between 3 and 4 (possibly 3 or 4). page 12 (WEBWORK PROB 6) PRACTICE Suppose that $\sum c_n x^n$ converges when x = -3 and diverges when x = 4. Determine whether the following series converge or diverge. $C \quad 1. \sum_{n=1}^{\infty} c_n (1)^n \quad \text{Distance between center (o) and } x=1 \text{ is } 1 < 3$ $\implies \text{ The series converges}$ 2. $\sum_{n=1}^{\infty} c_n 9^n$ Distance between center (o) and X=9 is 9>4 \Rightarrow the series diverges $C \qquad 3. \sum_{n=1}^{\infty} c_n (-2)^n \quad \text{Distance between center (o) and } x=-2 \quad \text{is } 2 < 3$ $\implies \text{ The series converges}$ 4. $\sum_{n=1}^{\infty} (-1)^n c_n 12^n = \sum_{n=1}^{\infty} c_n (-12)^n$ Distance between center (o) and x=-12 is 12>4 \Rightarrow the series diverges

(WEBWORK PROB 2)

Find the radius of converge and the interval of convergence of the power series φ^{\prime} , φ^{\prime} , φ^{\prime}

PRACTICE

$$\sum_{n=1}^{\infty} \frac{n^4 x^{3n}}{3^{3n}} = \sum_{n=1}^{\infty} n^4 \left(\frac{\chi^3}{7}\right)^n$$

We use the ratio test:

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+1)^4 x^{3(n+1)}}{3^{3(n+1)}} \cdot \frac{3^{3n}}{n^4 x^{3n}}\right| = \left(\frac{n+1}{n}\right)^4 \cdot \frac{x^3}{27}$$

Since $(n+1)^{4}/n^{4} \rightarrow 1$ as $n \rightarrow \infty$, we have

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\frac{x^3}{27}.$$

We have $x^3/27 < 1$ when |x| < 3. The radius of convergence is 3 and the series converges for -3 < x < 3. We check the endpoints. For x = -3, we have

$$\sum_{n=1}^{\infty} \frac{n^4 x^{3n}}{3^{3n}} = \sum_{n=1}^{\infty} \frac{n^4 (-3)^{3n}}{3^{3n}} = \sum_{n=1}^{\infty} (-1)^n n^4,$$

which diverges. Similarly, for x = 3, we have

by Test for Divergence
$$\sum_{n=1}^{\infty} \frac{n^4 x^{3n}}{3^{3n}} = \sum_{n=1}^{\infty} \frac{n^4 3^{3n}}{3^{3n}} = \sum_{n=1}^{\infty} n^4,$$

which diverges. The series diverges at both endpoints, so the interval of convergence is -3 < x < 3. by Test for Divergence (or p-series with p=-4)

Radius of convergence: 3
Interval of convergence:
$$(-3, 3)$$
 since the power series diverges
when $x = -3$, $x = 3$.