GROWTH RATES

Definition: Growth Rates of Functions (as x approaches infinity)

Suppose f and g are functions with $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty$. Then

- f grows faster than g as $x \rightarrow \infty$ if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty$. or $\lim _{x \rightarrow \infty} \frac{g(x)}{f(x)}=0$
- f and g have comparable growth rates if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=M$, where M is a positive number.

Theorem: Asymptotic Hierarchy

Let the symbol $f \ll g$ mean that g grows faster than f as $x \rightarrow \infty$. Then not covered in Math 2924

$$
\left.c \ll \quad(\ln x)^{q} \lll x^{p} \lll a^{x} \ll t^{\infty} e^{-t} d t\right) \lll x^{x}
$$

Polynomials grow faster than logarithmic functions.
Computation showing $\frac{x^{p}}{\ln (x)} \rightarrow \infty$ for positive $p \rightarrow \infty$:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{p}}{\ln x} & \stackrel{r^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{p x^{p-1}}{\left(\frac{1}{x}\right)} \text { by I'Hospital's Rule } " \frac{\infty}{\infty} \\
& =\lim _{x \rightarrow \infty} p x^{p-1} x^{\prime} \\
& =\lim _{x \rightarrow \infty} p x^{p} \\
& =\infty \quad \text { (since } p \text { is positive) }
\end{aligned}
$$

Exponential functions grow faster than polynomials.

Let $a=2$
$n=5 \quad a^{5} \quad 5!$
a.aaaa $<5.4 .3 .2 .1<5555$

$$
\begin{aligned}
& n=1000 a^{1000} 1000!\quad 10000^{1000} \\
& \underbrace{\text { aa..a }}_{1000 \text { times }}<\underbrace{1000(999)(998) . .}_{1000 \text { factors }}<\underbrace{(1000)(1000) \ldots .}_{1000 \text { times }}
\end{aligned}
$$

Computation showing that r^{x} (for $r>1$) grows faster than x^{p} : To save time, $\mid 111$ do $r=4$ and $p=2$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{4^{x}}{x^{2}} \quad \stackrel{I^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{4^{x} \ln 4}{2 x} \text { by I'Hospital's Rule "D" } \\
& \stackrel{I^{\prime \prime} H}{=} \lim _{x \rightarrow \infty} \frac{4^{x}(\ln 4)(\ln 4)}{2} \text { by Hospital's Rule "D"" } \\
&=\infty
\end{aligned}
$$

WHEN RATIO TEST SHOULD NOT BE USED

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{c}{c} \\
&=\lim _{n \rightarrow \infty} 1 \\
&=1
\end{aligned}
$$

Ratio Test will not work if the terms only have logarithmic / polynomial-like terms

Ratio is comparing a_{n+1} with a_{n} as $n \rightarrow \infty$. If $\frac{a_{n+1}}{a_{n}} \rightarrow 1$ as $n \rightarrow \infty$, we can't conclude anything about the series $\sum a_{n}$.

To save time, I'll set $q=1$

$$
\lim _{n \rightarrow \infty} \frac{(\ln (n+1))^{q}}{(\ln n)^{q}}=\lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\ln (n)}
$$

$\stackrel{\text { I'H }}{=} \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)}$ by I'Hospital's Rule " ∞ "

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{n}{n+1} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}} \\
& =1
\end{aligned}
$$

For example, $p=2$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{(n+1)^{p}}{n^{p}} & =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)}{1} \\
& =1
\end{aligned}
$$

USING GROWTH RATES TO CHECK WHETHER A SERIES CONVERGES
Q: Will the Ratio Test work?

1. Consider the series

$$
\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}
$$

No, the Ratio Test will be inconclusive.
(a) Fill in the blank with \ll or \gg :

$$
\ln (n+1) \quad \lll n
$$

(b) This means that
(See page 1)

$$
\lim _{n \rightarrow \infty} \frac{n}{\ln (n+1)}=\infty
$$

(c) Fill in the blank with \ll or \gg :

$$
\frac{1}{\ln (n+1)} \quad>\quad \frac{1}{n}
$$

(d) State whether the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges or diverges: The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges because remember that the harmonic series is divergent (or $\sum \frac{1}{n}$ is a p-series with $p \leq 1$)
(e) Let $a_{n}=\frac{1}{\ln (n+1)}$ and $b_{n}=\frac{1}{n}$. Compute

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n}{\ln (n+1)}=\infty
$$

(f) Because of part (e): $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$
part (d): $\sum b_{n}$ diverges
the series

$$
\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)} \text { diverges }
$$

by the Limit Comparison Test

A COMBINATION OF TWO TYPES OF SERIES

2. Consider the series

$$
\sum_{n=1}^{\infty} \frac{n^{5} 2^{n}}{3^{n}}=\sum_{n=1}^{\infty} \frac{n^{5}}{\left(\frac{3}{2}\right)^{n}}=\sum_{n=1}^{\infty} n^{5}\left(\frac{2}{3}\right)^{n}
$$

(a) The series $\sum_{n=1}^{\infty} n^{5}$ converges / diverges because $\frac{\sum_{n=1}^{\infty} \frac{1}{n^{-5}} \text { is a p-series with } p \leq 1}{\text { (or by Divergence Test). }}$
(b) The series $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$ converges diverges because it's a geometric series with $\frac{\text { ratio } \frac{2}{3} \text { in (}-1,1 \text {). }}{\text { (c) }}$
(c) Which one is more dominant? The numerator or the denominator?

Fill in the blank with \ll or \gg :

$$
\text { see slide } 1
$$

$$
n^{5} \ll\left(\frac{3}{2}\right)^{n} .
$$

Since $\underline{\left(\frac{3}{2}\right)^{n}}$ is more dominant, I think $\sum_{n=1}^{\infty} \frac{n^{5} 2^{n}}{3^{n}}$ will turn out to be convergent like $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}$.
(d) State the ratio test.

If $\lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|<1$, then $\sum a_{n}$ is absolutely convergent.
If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$, then $\sum a_{n}$ is divergent.
(e) Above, we said that if we see only logarithmic-like terms and polynomial-like terms, like $\ln (2 n)+n^{p_{1}}+n^{p_{2}}$, the ratio test will be inconclusive (Why?)

But, if you see powers like a^{n} (or a factorial or n^{n}) then the ratio test will probably work.
$n^{5} 2^{n} \quad(n+1)^{5}\left(\frac{3}{2}\right)^{n}$ So 1 think Ratio Test

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{5}}{n^{5}} \frac{\left(\frac{3}{2}\right)^{n}}{\left(\frac{3}{2}\right)^{n+}} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{5}}{n^{5}} \frac{1}{\left(\frac{3}{2}\right)}
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} \frac{\left(n^{5}+\ldots\right)}{n^{5}} \frac{2}{3}
$$

(f) By the ratio test, the series

$$
=1 \cdot \frac{2}{3}<1
$$

$$
\sum_{n=1}^{\infty} \frac{n^{5} 2^{n}}{3^{n}} \quad \text { converges }
$$

A COMBINATION OF MORE THAN TWO TYPES OF SERIES

3. Consider the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

for

$$
a_{n}=\frac{n^{n}}{7^{n}(n)!} \quad \text { and } \quad a_{n}=\frac{n^{n}}{2^{n}(n)!}
$$

(a) Look at the term of the series.

The numerator is n^{n} the fastest growing sequence in our asymptotic hierarchy
The denominator, $7^{n}(n)$! is the product of \qquad and factorial n ! . Hierarchy: $\quad 7^{n} \ll n!\ll n^{n}$
(b) Which do you think is more dominant for large n ? The numerator or the denominator?

(c) I told you that the ratio test will probably work if you see a geometric sequence $\left(r^{n}\right)$ or a factorial or n^{n}. Compute

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \text { So try Ratio Test }
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { for } \\
a_{n+1}\left(\frac{(n+1)^{n+1}}{7^{n+1}(n+1)!}\right) \quad a_{n}=\frac{n^{n}}{7^{n} n!} \quad \text { and } \quad a_{n}=\frac{n^{n}}{2^{n} n!}, ~
\end{array} \\
& \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\text { ? Indeterminate form, type "1, " } \\
& =\frac{(n+1)^{n+1}}{7^{n+1}(n+1)!} \cdot \frac{7^{n} n!}{n^{n}} \\
& =\frac{(n+1)^{n+1}}{n^{n}} \cdot \frac{7^{n}}{7^{n+1}} \cdot \frac{n!}{(n+1) y} \\
& =\frac{(n+1)^{n+1}}{n^{n}} \frac{1}{7} \frac{1}{(n+1)} \\
& =\frac{(n+1)^{n}}{n^{n}} \frac{1}{7} \\
& \text { Let } y=\left(1+\frac{1}{x}\right)^{x} \\
& \ln y=\ln \left[\left(1+\frac{1}{x}\right)^{x}\right]=x \ln \left[1+\frac{1}{x}\right] \\
& \lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{\ln \left[1+\frac{1}{x}\right]}{\left(\frac{1}{x}\right)} \\
& \begin{array}{l}
\stackrel{I^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{\left(1+\frac{1}{x}\right)}\left(-\frac{1}{x^{2}}\right)}{\left(-\frac{1}{x^{2}}\right)} \\
=1
\end{array} \\
& \text { by I'Hospital's Rule "or }
\end{aligned}
$$

(Recall: $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$ using l'Hospital's Rule for indeterminate powers, Sec 6.8)
(d) By the ratio test, the series

The number
is between

$$
\begin{aligned}
\sum \frac{n^{n}}{7^{n} n!} \frac{\text { converges }}{\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{e}{7}<1} & \text { and } \frac{n^{n}}{2^{n} n!} \frac{\text { diverges }}{\lim _{n \rightarrow \infty}} \frac{a_{n+1}}{a_{n}}=\frac{e}{2}>1
\end{aligned}
$$

Use either Limit Comparison Test or
Alternating Series Test to determine
whether $\sum_{n=3}^{\infty} \frac{\left(n^{2}-6\right) \cos (n \pi)}{n^{5}}$ converges / diverges
Answer: $\cos (n \pi)=\left\{\begin{array}{cl}1 & \text { if } n \text { is even } \\ -1 & \text { if } n \text { is odd }\end{array}\right.$
so $\sum_{n=3}^{\infty} \frac{\left(n^{2}-6\right) \cos (n \pi)}{n^{5}}=\sum_{n=3}^{\infty} \frac{\left(n^{2}-6\right)(-1)^{n}}{n^{5}}=\sum_{n=3}^{\infty}(-1)^{n} b_{n}$ for $b_{n}:=\frac{n^{2}-6}{n^{5}}$
Since $b_{n}>0$ for all $n \geqslant 3$,
b_{n} is decreasing, and

$$
\lim _{n \rightarrow \infty} b_{n}=0
$$

the series converges by Alternating Series Test

Webwork 11.7 Prob 1
Use the Limit Comparison Test to show that $\sum_{n=1}^{\infty} \frac{\ln (2 n)+3 n}{n^{2}}$ diverges.
Answer: Let $a_{n}=\frac{\ln (2 n)+3 n}{n^{2}}$
Let $b_{n}=\frac{1}{n}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{1}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{\ln (2 n)+3 n}{n^{2}} \cdot n \\
& =\lim _{n \rightarrow \infty} \frac{\ln (2 n)}{n}+3 \\
& =0+3=3
\end{aligned}
$$

$\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by poseries test $(p \leq 1)$
By the Limit Comparison Test, $\sum_{n=1}^{\infty} a_{n}$ also diverges.

