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Recall  The geometric series  ____________ to 

 
 

The geometric series  ___________ to 

 
 
 

The alternating harmonic series  _____________ by 

 
 

The harmonic series  _____________ by 

 
Above examples illustrate that removing the alternating signs in a convergent series may or may 
not result in a convergent series. Below terminology distinguishes these cases. 
 
Absolute and Conditional Convergence 
Definition  Absolute and Conditional Convergence 
 
Assume the infinite series  converges. 
 
 

1. If ______________________, then we say that the series  converges absolutely. 
 
 

2. If ______________________, then we say that the series  converges conditionally. 
 

 

Textbook Example 2:  
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3 converges the Alternating Series Test

Remove F1"/ since; Cr, is decreasing and istime =0

4 diverges p-series theorem (p=1) or

remember that the harmonic series diverges

Memorize

New The terms an may Imay not
be

all positive or all negative
Vocab (no restriction)
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5
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Example: 

Determine whether  diverges, converges absolutely, or converges conditionally. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TASK. Copy the solution to Textbook Example 1, pg 777  
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Theorem 3 Absolute Convergence Implies Convergence 
 
 
If ______________________________, then ______________________________.  
 
Proof Idea: 
 
 
 
 
 
Example:   

Determine whether  diverges, converges absolutely, or converges conditionally. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TASK. Copy the solution to Textbook Example 3, pg 778 
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If a series is absolutely convergent, then it is convergent.

Iland converge in · an converges
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an alternating series (so Alternating Series Test doesn't apply).
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Definition  Factorial 
 
The factorial of a positive integer , denoted by , is the product of all positive integers less 
than or equal to .  
 
 

• Simplify 4! = ____________________. 
 

• ____________________. 
 

• Simplify ____________________. 

 
 
Theorem  The Ratio Test 

Suppose  is an infinite series with positive terms. Consider . 

 
• (i) If , ________________________________________. 

 
 

• (ii) If , ________________________________________. 
 
 

• (iii) , ________________________________________. 
 
 

Example: Use the Ratio Test to determine whether the series  converge. 

 

Compute   

 
 
 
 
 
 
 
 
 

   is convergent / divergent by the Ratio Test, since _____________________________ 
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then an is divergent

then the Ratio Test is inconclusive
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TASK. Practice applying the Ratio Test to conclude absolute convergence. Copy the 
solution to Textbook Example 4, pg 780  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TASK. Practice applying the Ratio Test to conclude divergence. Copy the solution to 
Textbook Example 5, pg 781  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Practice withmore examples
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TASK. Practice applying the Ratio Test to conclude absolute convergence. Copy the 
solution to Textbook Example 4, pg 780  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TASK. Practice applying the Ratio Test to conclude divergence. Copy the solution to 
Textbook Example 5, pg 781  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Practice with more examples

-
See Exam

1 Sol

for Sec 6.8
1'Hospital 's
Rule
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The Root Test 
 
 
Theorem  The Root Test 

Suppose  is an infinite series. Consider . 

 
• If , ___________________________________________________________. 

 
 

• If , ______________________________________________________________. 
 
 

• , ________________________________________________________________. 
 
 

Example: Use the Root Test to determine whether the series  converge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
• The Root Test is inconclusive ____________________ the Ratio Test is inconclusive. 
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then E. an is divergent

the Root Test is inconclusive
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