1) Is
$$\sum_{n=1}^{\infty} n^2 \left(-\frac{1}{e}\right)^n$$
 an alternating series?
 $\sum_{n=1}^{\infty} (-1)^n \left(\frac{n^2}{e^n}\right)^n$ always positive

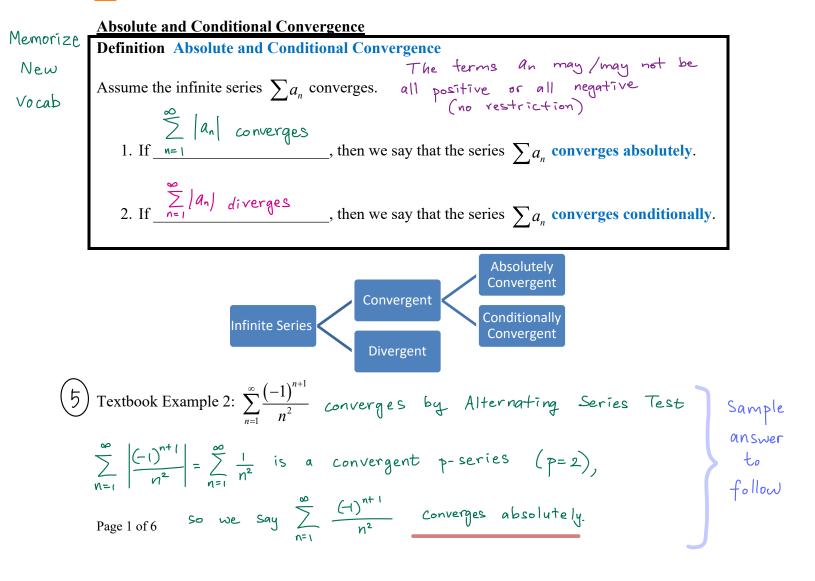
(2) Evaluate
$$\lim_{n \to \infty} \frac{N^2}{e^n} = \lim_{n \to \infty} \frac{2n}{e^n} = \lim_{n \to \infty} \frac{2}{e^n} = 0$$

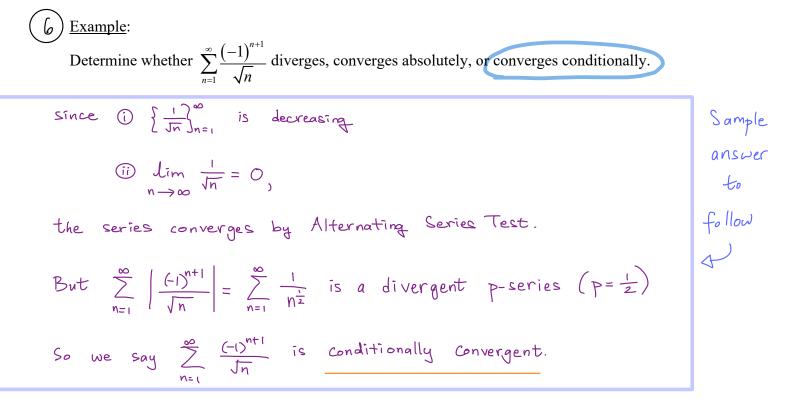
 $\frac{1'H''o''}{o''} = \frac{1'H''o''}{o''}$

Absolute convergence, Ratio Test, Root Test

Recall The geometric series
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2^n}$$
 converges to $\frac{1}{1-(\frac{1}{2})} = \frac{1}{(\frac{3}{2})} = \frac{2}{3}$
Without Ct^{n} t
(2) The geometric series $\sum_{n=0}^{\infty} \frac{1}{2^n}$ converges to $\frac{1}{1-(\frac{1}{2})} = \frac{1}{(\frac{1}{2})} = 2$
 $1 \frac{1}{2} \frac{1}{4}$
converges to the area of this lx2 rectangle
(Sec 11.5)
(3) The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges by the Alternating Series Test
kenove $(t)^n$ t since (i) $[\frac{1}{n} \int_{n=1}^{\infty}$ is decreasing and (i) $\lim_{n \to \infty} \frac{1}{n} = 0$
(4) The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by p-series theorem $(p=1)$ or
remember that the harmonic series diverges

Above examples illustrate that removing the alternating signs in a convergent series <u>may</u> or <u>may</u> not result in a convergent series. Below terminology distinguishes these cases.





TASK. Copy the solution to Textbook Example 1, pg 777 \leftarrow Similar example

If a series is absolutely convergent, then it is convergent.
Theorem 3 Absolute Convergence Implies Convergence
If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Proof Idea:

$$\mathbb{Z}$$
- $|a_n| \leq \mathbb{Z}|a_n| \leq \mathbb{Z}|a_n|$

Example:

Determine whether
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 diverges, converges absolutely or converges conditionally.
 $\sum \frac{\sin n}{n^2}$ has both positive and negative terms,
but $\sum \frac{\sin n}{n^2}$ is not an alternating series (so Alternating Series Test doesn't apply)
(We can apply comparison Test to $\sum \left| \frac{\sin n}{n^2} \right|$ with $\sum \frac{1}{n^2}$)
Let $a_n := \frac{|\sin n|}{n^2}$ and $b_n := \frac{1}{n^2}$
Since $0 \le a_n \le b_n$ for all $n = 1, 2, 3, ...$ and
 $(i) \ge b_n$ is a convergent p-series $(p=2)_3$
 $\sum \left(\frac{\sin n}{n^2} \right)$ also converges by the Comparison Test.
By def, $\sum \frac{\sin n}{n^2}$ absolutely converges.

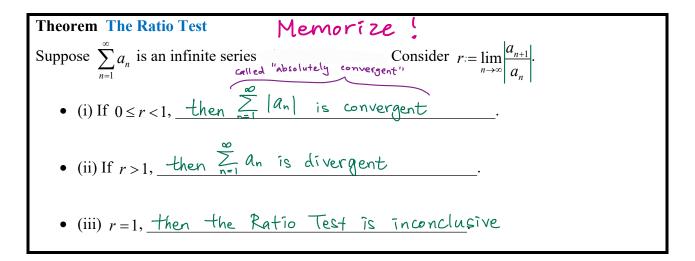
(meaning
$$\sum \frac{\sin n}{n^2}$$
 converges and $\sum \frac{\sin n}{n^2}$ (converges).

TASK. Copy the solution to Textbook Example 3, pg 778 < Similar example

Definition Factorial

The factorial of a positive integer n, denoted by n!, is the product of all positive integers less than or equal to n.

- Simplify 4! = 4.3.2.1 = 24.
- 0!=____.
- Simplify $\frac{(n+1)!}{n!} = \frac{(n+1)(n)(n-1)\cdots 2.1}{n(n-1)\cdots 2.1} = n+1$



Example: Use the **<u>Ratio Test</u>** to determine whether the series $\sum_{k=1}^{\infty} \frac{10^k}{k!}$ converge.

$$\frac{a_{k+1}}{a_k} = \frac{\left(\frac{10^{k+1}}{(k+1)!}\right)}{\left(\frac{10^k}{(k!)}\right)} = \frac{10^{k+1}}{(k+1)!} \cdot \frac{k!}{10^k} = \frac{10^{k+1}}{k+1}$$
Sample

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{10^{k+1}}{k+1} = 0$$

$$\sum_{k=1}^{\infty} \frac{10^k}{k!} \text{ is convergent} \text{ divergent by the Ratio Test, since } \frac{\int_{i} m}{k \to \infty} \frac{a_{k+1}}{a_k} = 0 < 1$$

Practice with more examples

Absolute convergence, Ratio Test, Root Test

TASK. Practice applying the Ratio Test to conclude absolute convergence. Copy the solution to Textbook Example 4, pg 780

EXAMPLE 4 Test the series $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$ for absolute convergence.

SOLUTION We use the Ratio Test with $a_n = (-1)^n n^3/3^n$:

TASK. Practice applying the Ratio Test to conclude divergence. Copy the solution to Textbook Example 5, pg 781

EXAMPLE 5 Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.

SOLUTION Since the terms $a_n = n^n/n!$ are positive, we don't need the absolute value signs.

Practice with more examples

Absolute convergence, Ratio Test, Root Test

TASK. Practice applying the Ratio Test to conclude absolute convergence. Copy the solution to Textbook Example 4, pg 780

EXAMPLE 4 Test the series $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$ for absolute convergence.

SOLUTION We use the Ratio Test with $a_n = (-1)^n n^3/3^n$:

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{\frac{(-1)^{n+1}(n+1)^3}{3^{n+1}}}{\frac{(-1)^n n^3}{3^n}}\right| = \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3}$$

$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^3 = \frac{1}{3} \left(1 + \frac{1}{n} \right)^3 \to \frac{1}{3} < 1$$

Thus, by the Ratio Test, the given series is absolutely convergent.

TASK. Practice applying the Ratio Test to conclude divergence. Copy the solution to Textbook Example 5, pg 781

EXAMPLE 5 Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.

SOLUTION Since the terms $a_n = n^n/n!$ are positive, we don't need the absolute value signs.

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{(n+1)(n+1)^n}{(n+1)n!} \cdot \frac{n!}{n^n}$$

$$= \left(\frac{n+1}{n}\right)^n = \left(1 + \frac{1}{n}\right)^n \rightarrow e \quad \text{as } n \rightarrow \infty \qquad \text{for Sec 6.8}$$

(Hospital's rule)

(see Equation 6.4.9 or 6.4*.9). Since e > 1, the given series is divergent by the Ratio Test.

<u>The Root Test</u>

Theorem The Root Test
Suppose
$$\sum_{n=1}^{\infty} a_n$$
 is an infinite series. Consider $r = \lim_{n \to \infty} \sqrt{a_n}$.
• If $0 \le r < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (*x* so is convergent).
• If $r > 1$, then $\sum_{n=1}^{\infty} a_n$ is divergent.
• $r = 1$, the Root Test is inconclusive.

<u>Example</u>: Use the <u>**Root Test**</u> to determine whether the series $\sum_{k=1}^{\infty} \left(\frac{2k+3}{3k+2}\right)^k$ converges.

Let
$$a_k := \left(\frac{2k+3}{3k+2}\right)^k$$

$$k \left[\frac{2k+3}{3k+2} \right]^{k} = \frac{2k+3}{3k+2}$$

$$\lim_{k \to \infty} \frac{k}{\sqrt{\left[a_{k}\right]}} = \lim_{k \to \infty} \frac{2k+3}{3k+2} = \frac{2}{3} < 1$$

• The Root Test is inconclusive implies the Ratio Test is inconclusive.
and vice versa
(So if
$$\lim_{k \to \infty} \frac{k}{\sqrt{|q_k|}} = 1$$
, $\lim_{k \to \infty} \frac{q_{k+1}}{q_k}$ will be 1 also

Page 6 of 6