Lecture 11.5 Alternating Series

A series is called alternating if the terms are alternately positive and negative.

Alternating Series Test.

IF the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots, \quad \text { where all } b_{n}>0
$$

or

$$
\sum_{n=1}^{\infty}(-1)^{n} b_{n}=-b_{1}+b_{2}-b_{3}+b_{4}-b_{5}+b_{6}-\cdots, \quad \text { where all } b_{n}>0
$$

satisfies
(i) $b_{n+1} \leq b_{n}$ for all n,
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$,

THEN

the series Converges
(Justification is given on Textbook pg 773)

Note: If either condition in this test fails then the test cannot be used.

Example of an alternating series

Example: Decide if $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}$ converges or diverges.

Thinking about the problem:

The series starts off as $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$ and is alternating with $b_{n}=\frac{1}{2 n-1}$. Let's check the conditions for the Alternating Series Test.

Doing the problem:
For $b_{n}=\frac{1}{2 n-1}>0$ we need to check (i.) $\overbrace{b_{n+1} \leq b_{n} \text { for all } n}$ and (ii.) $\overbrace{b_{n} \rightarrow 0 \text { as } n \rightarrow \infty}$.
(i.) The inequality $b_{n+1} \leq b_{n}$ is the same as $\overbrace{\frac{1}{2 n+1}}^{b_{n+1}} \leq \overbrace{\frac{1}{2 n-1}}^{b_{n}}$, which is equivalent to saying $2 n+1 \geq 2 n-1$, and that last inequality is true. Alternatively, using calculus, the function $f(x)=\frac{1}{2 x-1}$ has derivative $f^{\prime}(x)=-\frac{2}{(2 x-1)^{2}}$, which is negative for $x \geq 1$, so $f(x)$ is decreasing for $x \geq 1$.
(ii.) For the limit, $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{2 n-1}=0$.

We can conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}$ converges using the Alternating Series Test.
Note: The Alternating Series Test
can never be used to determine divergence.
If you think an alternating series is divergent, use another the to show this.

1. Determine if the series $\sum_{n=1}^{\infty} n\left(-\frac{1}{2}\right)^{n}$ converges or diverges, with justification.
(a) Decide what b_{n} should be, and check that the series fits the conditions of the Alternating Series Test.
(b) Using the Alternating Series Test, does the series converge or diverge?

Rewrite $\sum_{n=1}^{\infty} n(-1)^{n}\left(\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{2^{n}}$
So this is an alternating series with $b_{n}=n\left(\frac{1}{2}\right)^{n}$
(i) Let $f(x)=x\left(\frac{1}{2}\right)^{x}$
which is negative if $1-x \ln (2)<0$

$$
\begin{array}{rl}
1<x \ln (2) & \operatorname{Reca11:} \\
1.4 \approx \frac{1}{\ln (2)}<x & 0=\ln 1<\ln (2)<\ln (e)=1
\end{array}
$$

So $b_{n+1} \leq b_{n}$ for all $n=2,3,4, \ldots$ and condition (i) is satisfied
(ii) $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=\lim _{n \rightarrow \infty} \frac{1}{2^{n} \ln 2}=0$ sospital's Rule " $\frac{\infty^{\infty}}{\infty} \quad$ condition ii is satisfied. By the Alternating Series Test, $\sum_{n=1}^{\infty} n\left(-\frac{1}{2}\right)^{n}$ converges.

Webwork 2. True or false? The infinite series $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{1 / 4}}$ is alternating. $\frac{-1}{1}+\frac{1}{2}+\frac{-1}{3}+\frac{1}{4}+\frac{-1}{5}+\ldots$ $\cos (n \pi)=\left\{\begin{array}{cl}-1 & \text { if } n \\ 1 & \text { is odd } \\ 1 & \text { if } n \text { is even }\end{array}\right.$

so $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{1 / 4}}=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{1 / 4}}$ is alternating with $b_{n}=\frac{1}{n^{1 / 4}}$.

Helpful Examples from Textbook
3. Determine if the following series converge or diverge, with justification.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ (Copy solution from Example 1, pg 774)
(b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+1}$ (Copy solution from Example 2, pg 774)
(c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{3 n}{4 n-1}$ (Copy solution from Example 2, pg 774)

