What we know So far ...
Geometric series
Telescoping series
Sec
11.2 Divergence Test
Harmonic series
$$\sum \frac{1}{k}$$

Sec
11.3 Integral Test
Sec (harmonic series is a p-series)

Ēχ

1

Remember: The tests on this lecture can only be applied to series with positive terms.

The Comparison Test

The Comparison Tests

Task. Use the Comparison Test to conclude convergence: Copy Textbook Example 1, pg 768.

```
Do

at \sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3} is convergent or divergent?

What b_n will work?

home
```

Task. <u>Use the Comparison Test to conclude divergence:</u> Copy Textbook Example 2, pg 768.

 $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ is convergent or divergent?

What by will work?

The Limit Comparison Test

Theorem The Limit Comparison Test
Suppose
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ are infinite series with positive terms. Let $\lim_{n \to \infty} \frac{a_n}{b_n} = L$.
(1) If L is a positive number, then (THINK: a_n is close to L ben for large n)
 a positive number
 $\sum_{n=1}^{\infty} a_n a_n d \sum_{n=1}^{\infty} b_n$ either both converge or both diverge
(2) If $L = 0$ and $\sum_{n=1}^{\infty} b_n$ converges, then (THINK: a_n is much smaller than b_n)
 $for large n$
 $\sum_{n=1}^{\infty} a_n a | so$ converges
(ref: Sec 11.4 Exercise 40 on page 772).
(3) If $\frac{bm}{bn} \frac{a_n}{bn} = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges, then (THINK: a_n is much bigger than b_n)
 $\int_{n=1}^{\infty} a_n a | so$ diverges
(ref: Sec 11.4 Exercise 41 on page 772).

Example. Using the <u>Limit Comparison Test</u>, determine if the series $\sum_{n=1}^{\infty} \frac{n^4 - 2n^2 + 3}{2n^6 - n + 5}$ converges. n⁴

Step 0 (Brainstorm).

- Dominant term of the top function: n^{-1} Dominant term of the bottom function: $2n^{6}$ or n^{6} $\frac{n^{4}}{n^{6}} = \frac{1}{n^{2}}$

• So, try comparing this series with a p-series
$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^p}$$
 where $p=2$
ep 1. Let $a_n = \frac{n^4 - 2n^2 + 3}{2n^6 + n + 5}$, $b_n = \frac{1}{n^2}$

Step 1. Let
$$a_n = \frac{n^4 - 2n^2 + 3}{2n^6 - n + 3}$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^4 - 2n^2 + 3}{2n^6 - n + 5} \cdot \frac{n^2}{1} = \lim_{n \to \infty} \frac{n^2 - 2n^4 + 3n^2}{2n^6 - n + 5} = \lim_{n \to \infty} \frac{n^6}{2n^6} = \frac{1}{2}$$

Step 2. Since
$$\frac{h_m}{n \to \infty} \frac{h_n}{b_n}$$
 is positive
, the series $\sum_{n=1}^{\infty} \frac{n^4 - 2n^2 + 3}{2n^6 - n + 5}$ converges by the Limit Comparison Test
(since $\sum b_n = \sum \frac{1}{n^2}$ is a convergent p-series)

More examples

Lecture 11.4

The Comparison Tests

Task. <u>Use the Limit Comparison Test to conclude convergence:</u> Copy the solution from Textbook Example 3, pg 769

$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$
 is convergent or divergent?
What by will work?

EXAMPLE 3 Test the series $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$ for convergence or divergence.

SOLUTION We use the Limit Comparison Test with

$$a_n = \frac{1}{2^n - 1} \qquad b_n = \frac{1}{2^n}$$

and obtain

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1/(2^n - 1)}{1/2^n} = \lim_{n \to \infty} \frac{2^n}{2^n - 1} = \lim_{n \to \infty} \frac{1}{1 - 1/2^n} = 1 > 0$$

Task. <u>Use the Limit Comparison Test to conclude divergence</u>: Copy the solution from Textbook Example 4, pg 770

$$\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$$
 is convergent or divergent?

What by will work?

EXAMPLE 4 Determine whether the series $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$ converges or diverges.

SOLUTION The dominant part of the numerator is $2n^2$ and the dominant part of the denominator is $\sqrt{n^5} = n^{5/2}$. This suggests taking

$$a_n = \frac{2n^2 + 3n}{\sqrt{5 + n^5}} \qquad b_n = \frac{2n^2}{n^{5/2}} = \frac{2}{n^{1/2}}$$
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}} \cdot \frac{n^{1/2}}{2} = \lim_{n \to \infty} \frac{2n^{5/2} + 3n^{3/2}}{2\sqrt{5 + n^5}}$$
$$= \lim_{n \to \infty} \frac{2 + \frac{3}{n}}{2\sqrt{\frac{5}{n^5} + 1}} = \frac{2 + 0}{2\sqrt{0 + 1}} = 1$$

Since $\sum b_n = 2 \sum 1/n^{1/2}$ is divergent (*p*-series with $p = \frac{1}{2} < 1$), the given series diverges by the Limit Comparison Test.

(

1

The Limit Comparison Test

Theorem the Limit Comparison Test
Suppose
$$\sum_{n=0}^{\infty} e_n \operatorname{and} \sum_{n=0}^{\infty} h_n \operatorname{crimine} \operatorname{series} \operatorname{vitip positive terms. Let $\lim_{n \to \infty} d_{n-1} L$.
() • If L is a positive number, then $(\operatorname{Triver}_{n-1}, d_n \in class to L h_n for large n)$
 $\frac{2}{2\pi} d_n \operatorname{and} \frac{2}{2\pi} h_n \operatorname{citiver}$ to the Converge nor both diverge
() • If L = 0 and $\sum_{n=0}^{\infty} h_n \operatorname{citiver}$ to the Converge nor both diverge
() • If L = 0 and $\sum_{n=0}^{\infty} h_n \operatorname{citiver}$ to the Converge nor both diverge
() • If L = 0 and $\sum_{n=0}^{\infty} h_n \operatorname{citiver}$ to the Converge nor both diverge
() • If L = 0 and $\sum_{n=0}^{\infty} h_n \operatorname{citiver}$ to the Converge nor both diverge
() • If L = 0 and $\sum_{n=0}^{\infty} h_n \operatorname{citiver}$ to the Converge normality then h_n)
 $\sum_{n=1}^{\infty} d_n \operatorname{alse} \operatorname{converges}$ () () for the class is much beyond have a page 772).
() • If $\frac{1}{2\pi} \frac{d_n - \omega}{n} = \frac{1}{2\pi} \frac{1}{2\pi}$ () () for the class is much beyond have a page 772).
() • If $\frac{1}{2\pi} \frac{d_n - \omega}{n} = \frac{1}{2\pi} \frac{1}{2\pi}$ () () for the class is much beyond have a page 772).
() • If $\frac{1}{2\pi} \frac{d_n - \omega}{n} = \frac{1}{2\pi} \frac{1}{2\pi}$
But $\frac{d_n}{b_n} = \frac{1}{n} \frac{n}{n}$, $\frac{n^2}{1} = 2n n \rightarrow \infty$ as $n \rightarrow \infty$ () (and apply LCT with this b_n)
 $\operatorname{Since} Z = \frac{1}{n} \operatorname{converges}$
 $K = \operatorname{Tryp}_{n \to \infty} h_n = \frac{1}{n^2}$
 $\dim_{n \to \infty} \frac{d_n}{n} = \operatorname{dern}_{n \to \infty} (\frac{1}{n}) = 0$ (we can apply LCT (2) with this $b_n = \frac{1}{n^1}$)
 $\operatorname{Since} \int_{n \to \infty} \frac{d_n}{h_n} = 0$ and $\sum_{n \to \infty}^{\infty} h_n$ converges,
 $\sum_{n \to \infty}^{\infty} d_n$ also converges by Limit Comparison Test (2)$$

Lecture 11.4

Answer

The Comparison Tests

The Limit Comparison Test

Theorem The Limit Comparison Test Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are infinite series with positive terms. Let $\lim_{n \to \infty} \frac{a_n}{b_n} = L$. (1) If L is a positive number, then (THINK: a_n is close to L ben for large n) positive number $<math>\sum_{n=1}^{\infty} \frac{a_n}{a_n} = \frac{a_n}{2} \sum_{n=1}^{\infty} b_n$ either both Converge or both diverge (2) If L = 0 and $\sum_{n=1}^{\infty} b_n$ either both Converge or both diverge $\sum_{n=1}^{\infty} \frac{a_n}{a_n} = \frac{a_n}{b_n} \sum_{n=1}^{\infty} b_n$ either both Converge or both diverge (ref. Sec 11.4 Exercise 40 on page 772). (3) If $\sum_{n=1}^{0} \frac{b_n}{a_n} \sum_{n=1}^{\infty} b_n$ diverges, then (THINK: a_n is much bigger than b_n) $\sum_{n=1}^{\infty} \frac{a_n}{a_n} = \frac{a_n}{b_n} \sum_{n=1}^{\infty} b_n$ diverges (ref. Sec 11.4 Exercise 41 on page 772). (3) If $\sum_{n=1}^{0} \frac{b_n}{a_n} \sum_{n=1}^{\infty} b_n$ diverges (ref. Sec 11.4 Exercise 41 on page 772). (4) Example : Use the Limit Comparison Test to determine whether $\sum_{n=1}^{\infty} \frac{\sqrt{n^2+1}}{n^2 - 4n+2}$ Brain storm : Try $b_n = \frac{\sqrt{n^2}}{n^2} = \frac{n^2}{n^2} = \frac{1}{n^2-2} = \frac{1}{n^2}$

or try
$$b_n = \frac{1}{n}$$
 because I want to demonstrate part 3 of
the Limit Comparison Test

Let
$$A_n = \frac{\sqrt{n^2 + 1}}{8n^2 - 4n + 2}$$
 Let $b_n = \frac{1}{n}$

$$\frac{a_{n}}{b_{n}} = \frac{\sqrt{n^{3} + 1}}{8 n^{2} - 4n + 2}, \quad n = \frac{n \sqrt{n^{3} + 1}}{8n^{2} - 4n + 2}$$

$$\lim_{n \to \infty} \frac{a_{n}}{b_{n}} = \lim_{n \to \infty} \frac{n \sqrt{n^{3}}}{8 n^{2}} = \lim_{n \to \infty} \frac{n n^{\frac{1}{2}}}{8 n^{2}} = \lim_{n \to \infty} \frac{n^{\frac{1}{2}}}{8 n^{2}} = \lim_{n \to \infty} \frac{n^{\frac{1}{2}}}{8 n^{2}} = \lim_{n \to \infty} \frac{n^{\frac{1}{2}}}{8 n^{2}} = 0$$

Since $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ and $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ is a divergent p-series, $\sum_{n=1}^{\infty} a_n$ is also divergent by Limit Comparison Test (3)