Intuition for the Integral Test:
Suppose $f(x)$ is a continuous and positive function on $[1, \infty)$.
a. Use the Right Endpoint Rule with $n=5$ to approximate the integral $\int_{1}^{6} f(x) d x$.

b. Use the Left Endpoint Rule with $n=5$ to approximate the integral $\int_{1}^{6} f(x) d x$.

c. Suppose $f(x)$ is decreasing, then

$$
\begin{aligned}
& \text { the estimated value in part (a) } \leq \quad \text { the value of } \int_{1}^{6} f(x) d x \text { and } \\
& \text { the estimated value in part (b) }
\end{aligned}
$$

Integral Test

Suppose $f(x)$ is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then

In general,

$$
\begin{aligned}
& a_{2}+a_{3}+a_{4} \leq \int_{1}^{4} f(x) d x \leq a_{1}+a_{2}+a_{3} \\
& a_{2}+\ldots+a_{6} \leq \int_{1}^{6} f(x) d x \leq a_{1}+a_{2}+\ldots+a_{5}
\end{aligned}
$$

$$
\underbrace{\sum_{k=2}^{n} a_{k}}_{(a)} \leq \int_{1}^{n} f(x) d x \leq \underbrace{\sum_{k=1}^{n-1} a_{k}}_{(b)}
$$

The Integral Test

Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then

- If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is Convergent as well.
- If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent as wel.l

When we use the Integral Test

- It is not necessary to start the series or the integral at $n=1$. For example, in testing the series $\sum_{n=4}^{\infty} \frac{1}{(n-3)^{2}}$ we can use $\int_{4}^{\infty} \frac{1}{(x-3)^{2}} d x$.
e.j. OK to start at $n=4$
- It is not necessary that f be always decreasing. What is important is that f be ultimately decreasing. That is, decreasing on $[N, \infty)$ for some number N. Then $\sum_{n=N+1}^{\infty} a_{n}$ is convergent, which means $\sum_{n=1}^{\infty} a_{n}$ is convergent.
We should NOT infer from the Integral Test that the sum of the series is equal to the value of the integral. In general,

Example: Suppose we know that

- f is continuous, positive, and decreasing on $[2, \infty)$, and
- If $t>2$, then $\int_{2}^{t} f(x) \mathrm{dx}=\frac{1}{\ln 2}-\frac{1}{\ln t}$.

Use the Integral Test (above) to determine whether the series $\sum_{k=2}^{\infty} f(k)$ converges or diverges.
Answer First step (Check whether $\int_{2}^{\infty} f(x)$ dx converges or diverges.)

$$
\begin{aligned}
\int_{2}^{\infty} f(x) d x & \stackrel{\text { def }}{=} \lim _{t \rightarrow \infty} \int_{2}^{t} f(x) d x \\
& =\lim _{t \rightarrow \infty} \frac{1}{\ln 2}-\frac{1}{\ln t} \\
& =\frac{1}{\ln 2}
\end{aligned}
$$

Second step:

$$
\text { So } \int_{2}^{\infty} f(x) d x \text { converges }
$$

- If $\int_{2}^{\infty} f(x) \mathrm{dx}$ converges, then $\sum_{k=2}^{\infty} f(k)$ also converges by the Integral Test.
- If $\int_{2}^{\infty} f(x) \mathrm{dx}$ diverges, then $\sum_{k=2}^{\infty} f(k)$ also diverges by the Integral Test. Since $\int_{2}^{\infty} f(x) d x$ converges, $\quad \sum_{k=2}^{\infty} f(k)$ also converges.

Question: Does this mean that $\sum_{k=2}^{\infty} f(k)=\frac{1}{\ln 2}$? NO. In general, $\sum_{k=2}^{\infty} f(k) \neq \int_{2}^{\infty} f(x) d x$

Example: Suppose we know that

- g is continuous, positive, and decreasing on $[1, \infty)$, and
- If $t>1$, then $\int_{1}^{t} g(x) \mathrm{dx}=2 \sqrt{t+5}-2 \sqrt{6}$.

Use the Integral Test (above) to determine whether the series $\sum_{k=1}^{\infty} g(k)$ converges or diverges.
Answer First step:

$$
\begin{aligned}
\int_{1}^{\infty} g(x) d x & \stackrel{\text { def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} g(x) d x \\
& =\lim _{t \rightarrow \infty}(2 \sqrt{t+5}-2 \sqrt{6}) \\
& =\infty
\end{aligned} \quad \text { so } \int_{1}^{\infty} g(x) d x \text { diverges }
$$

Second step:

$$
\text { Since } \int_{1}^{\infty} g(x) d x \text { diverges, } \sum_{k=1}^{\infty} g(k) \text { also diverges. }
$$

Example (Copy the solution from Example 4 (page 570 from Sec 7.8 Improper Integral)
For what values of p is the improper integral

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x
$$

Answer:
convergent iff
$p>1$
convergent?
Why? If $p \neq 1$, then if $t>1, \quad \int_{1}^{t} \frac{1}{x^{p}} d x=\int_{1}^{t} x^{-p} d x$

$$
\begin{aligned}
& =\left.\frac{x^{-p+1}}{-p+1}\right|_{x=1} ^{x=t} \\
& =\frac{t^{-p+1}-1}{-p+1} \\
& \int_{1}^{\infty} \frac{1}{x^{p}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{p}} d x \\
& =\lim _{t \rightarrow \infty} \frac{t^{-p+1}-1}{-p+1}=\left\{\begin{array}{cl}
\frac{0-1}{-p+1} & \text { if }-p+1 \text { is negative } \\
\infty & \text { if }-p+1 \text { is positive }
\end{array}\right. \\
& \begin{array}{l}
t \text { (negative number) } \\
\begin{array}{l}
\text { (positive number) }
\end{array} \rightarrow 0 \text { as } t \rightarrow \infty \\
t^{\text {(n) }} \rightarrow \infty
\end{array} \quad \begin{array}{c}
\text { as } t \rightarrow \infty
\end{array}
\end{aligned}
$$

$\underline{\text { Task (Copy the solution from Example 1, page } 568 \text { from Sec 7.8): Do at }}$ Evaluate

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x
$$

when $p=1$

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x} d x & = \\
& =\infty
\end{aligned}
$$

Convergence and Divergence of the p-series

If $p \leq 0$, For any number p, the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is called a p-series.
$\sum \frac{1}{n^{p}}\left\{\right.$ If $p<0$, then $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=\infty$. If $p=0$, then $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=1$.
by Test
In either case, $\lim _{n \rightarrow \infty} \frac{1}{n^{p}} \neq 0$, so the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges by the Test for Divergence.

If $p>0$,
use the \quad If $p>0$, then the function $f(x)=\frac{1}{x^{p}}$ is continuous, positive and decreasing on $[1, \infty)$.
use the
Previous slide: $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges if $p>1$ and diverges if $p \leq 1$.
So, $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $0<p \leq 1$ by the Integral Test.

In particular, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent
$\xrightarrow[\infty]{\text { Practice/Review: Determine whether the series } \sum_{k=1}^{\infty} k^{-\frac{3}{4}} \text { converges or diverges. }}$

$$
\left.\sum_{k=1}^{\infty} \frac{1}{k^{\frac{3}{4}}} \text {, } p=\frac{3}{4}<1 \text {, so } \frac{1}{k^{\frac{3}{4}}}\right\rangle \frac{1}{n} \text {, so } \sum \frac{1}{k^{3 / 4}} \text { diverges }
$$

Practice/Review: Determine whether the series $\sum_{k=4}^{\infty} \frac{1}{(k-1)^{\sqrt{2}}}$ converges or diverges.

$$
\text { Firs+ term is } \frac{1}{(4-1)^{\sqrt{2}}}=\frac{1}{3^{\sqrt{2}}} \longrightarrow \sum_{k=3} \frac{1}{k^{\sqrt{2}}} \rightarrow \text { so } p=\sqrt{2}>1
$$

Practice/Review: Which of the following is a convergent p-series?
A.) $\sum_{k=1}^{\infty} \frac{3}{1^{k}}$
B.) $\sum_{k=1}^{\infty} \frac{3}{\left(\frac{1}{2}\right)^{k}} r=2^{k}$
C.) $\sum_{k=1}^{\infty} \frac{3}{k^{2}}$
D.) $\sum_{k=1}^{\infty} \frac{3}{k^{\frac{1}{2}}}$
($r=\frac{1}{2}$
Geometric series
$-p-$ series
$p=2>1$

- Convergent

$$
\begin{aligned}
& p \text {-series } \\
& p=\frac{1}{2}<1 \\
& \text { not convergent }
\end{aligned}
$$

Page 5 of 6
 Not convergent.
Also not a

$$
p \text {-series }
$$

Possible Strategy (so far)

Assume $\sum_{n=1}^{\infty} a_{n}$ is an infinite series with $a_{n}>0$ for all n.

1. Check if it is a Geometric Series.

No! Go to (2).
Yes! If $r \geq 1$ or $r \leq-1$, then the series diverges. If $-1<r<1$, then $S=\frac{a_{1}}{1-r}$.
2. Check if it is a p-Series.

No! Go to (3).
Yes! If $p \leq 1$, then the series diverges. If $p>1$, then the series converges.
3. Check if $\lim _{k \rightarrow \infty} a_{k}=0$. (L'Hôpital's Rule is used if necessary)

Yes! Then the test is inconclusive. Go to (4).
No! Then the series diverges by the Test for Divergence.
4. Check if it is a Telescoping Series.

No! Go to (5).
Yes! Evaluate S_{n} by cancelling middle terms and $S=\lim _{n \rightarrow \infty} S_{n}$.
5. Use the following Tests:

The Integral Test (when a_{n} is positive, decreasing, and "easy to integrate")
More tests to come

Extra practice questions:

Use one of the above methods to determine whether the following series converge.

Divergent
a) $\sum_{n=1}^{\infty} \frac{1}{(\ln 2)^{n}}$

$$
\begin{aligned}
& \text { Geometric series ratio is }\left(\frac{1}{\ln 2}\right)^{n} \\
& \ln 2<\ln e=1 \text { so } 1<\frac{1}{\ln 2}
\end{aligned}
$$

Divergent by b) $\sum_{n=1}^{\infty} \frac{2^{n}}{n+1} \quad \begin{aligned} & \text { Neither a geometric series nor } p \text {-series }\end{aligned}$ Test for Divergence $\sum_{n=1} n+1$ $\lim _{n \rightarrow \infty} \frac{2^{n}}{n+1}=\lim _{n \rightarrow \infty} \frac{(\ln 2) 2^{n}}{1}=\infty$

Convergent
c) $\sum_{n=1}^{\infty} \frac{2}{n \sqrt{n}} \quad p$-series $p=\frac{3}{2}>1$

Divergent
d) $\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n}\right)=\sum_{n=1}^{\infty} \ln (n+1)-\ln (n)$

Telescoping series -
See page 4 of Lecture 11.2 note

