The Integral Test

Intuition for the Integral Test:

Suppose f(x) is a continuous and positive function on $[1,\infty)$.

a. Use the **<u>Right Endpoint Rule</u>** with n = 5 to approximate the integral $\int_{1}^{6} f(x) dx$.

b. Use the <u>Left Endpoint Rule</u> with n = 5 to approximate the integral $\int_{1}^{6} f(x) dx$.

c. Suppose f(x) is **decreasing**, then

Lecture 11.3

The Integral Test

Integral Test

Suppose f(x) is a continuous, positive, decreasing function on $[1,\infty)$ and let $a_n = f(n)$. Then $\begin{bmatrix} (a) \text{ pight end point} \\ (b) \text{ left end point} \\ (c) \text{ le$

• If
$$\int_{1}^{\infty} f(x) dx$$
 is divergent, then $\sum_{n=1}^{\infty} a_n$ is clivergent as well

When we use the Integral Test

• It is not necessary to start the series or the integral at n = 1. For example, in testing the series $\sum_{n=1}^{\infty} \frac{1}{2}$ we can use $\int_{0}^{\infty} \frac{1}{2} dx$.

peries
$$\sum_{n=4}^{1} \frac{1}{(n-3)^2}$$
 we can use $\int_4^{1} \frac{1}{(x-3)^2} dx$
by or to start at $n=4$

• It is not necessary that f be always decreasing. What is important is that f be

ultimately decreasing. That is, decreasing on $[N,\infty)$ for some number N. Then $\sum_{n=1}^{\infty} a_n$

is convergent, which means $\sum_{n=1}^{\infty} a_n$ is convergent.

We should **NOT** infer from the Integral Test that the sum of the series is equal to the value of the integral. In general,

$$\sum_{\substack{n=1\\ \text{often}}}^{\infty} a_n \neq \int_1^{\infty} f(x) \, dx.$$

Example: Suppose we know that

• f is continuous, positive, and decreasing on $[2, \infty)$, and

• If
$$t > 2$$
, then $\int_{2}^{t} f(x) \, dx = \frac{1}{\ln 2} - \frac{1}{\ln t}$.

Use the Integral Test (above) to determine whether the series $\sum_{k=2}^{\infty} f(k)$ converges or diverges.

<u>Answer</u> First step (Check whether $\int_2^{\infty} f(x) \, dx$ converges or diverges.)

$$\int_{2}^{\infty} f(x) dx = \int_{2}^{\infty} \int_{2}^{\infty} f(x) dx$$

$$= \int_{2}^{1} \int_{2}^{\infty} \int_{2}^{\infty} f(x) dx$$

$$= \int_{2}^{1} \int_{2}^{\infty} f(x) dx$$
Second step:

$$\int_{2}^{\infty} f(x) dx \text{ converges, then } \sum_{k=2}^{\infty} f(k) \text{ also converges by the Integral Test.}$$

$$\int_{2}^{\infty} f(x) dx \text{ diverges, then } \sum_{k=2}^{\infty} f(k) \text{ also diverges by the Integral Test.}$$

$$\int_{2}^{\infty} f(x) dx \text{ converges, then } \sum_{k=2}^{\infty} f(k) \text{ also diverges by the Integral Test.}$$
Question: Does this mean that $\sum_{k=2}^{\infty} f(k) = \frac{1}{\ln 2}$? NO. In general, $\sum_{k=2}^{\infty} f(k) \neq \int_{2}^{\infty} f(x) dx$

Example: Suppose we know that

• g is continuous, positive, and decreasing on $[1, \infty)$, and

• If
$$t > 1$$
, then $\int_{1}^{t} g(x) \, dx = 2\sqrt{t+5} - 2\sqrt{6}$.

Use the Integral Test (above) to determine whether the series $\sum_{k=1}^{\infty} g(k)$ converges or diverges.

Since $\int_{1}^{\infty} g(x) dx diverges$, $\sum_{k=1}^{\infty} g(k)$ also diverges.

Answer First step:

Second step:

Since

Lecture 11.3

The Integral Test

Example (Copy the solution from Example 4 (page 570 from Sec 7.8 Improper Integral)

For what values of p is the improper integral	Answer:
$\int_{0}^{\infty} \frac{1}{dx} dx$	convergent iff
$\int_{1} x^{p} \frac{1}{1}$	P > 1
t	
Why? If $p \neq 1$, then if $t > 1$, $\int \frac{1}{x^{p}} dx = 1$	$\int x^{-p} dx$
-	$\frac{X^{-P+1}}{P+1} \Big _{X=1}^{X=t}$
	+-P+I - 1
$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{p}} dx = \frac{1}{x^{p}} dx$	<u>-}+1</u>
$= \lim_{t \to \infty} \frac{t^{-P+1} - 1}{-P+1} = \begin{cases} \frac{0 - 1}{-P+1} \end{cases}$	if -p+1 is negative
~~	if -p+1 is positive
$t(negative number) \rightarrow 0$ as $t \rightarrow \infty$	Note: -p+1 is negative 👄
(positive number)	P>¹
	and
	-pt(is positive (=>
	P<1
<u>Task (</u> Copy the solution from Example 1, page 568 from Sec 7. Evaluate	.8): Do at <u>La</u>
$\int_{0}^{\infty} \frac{1}{x^{p}} dx$	Answer:
when $p = 1$	Diverges when p=1

 $\int_{1}^{\infty} \frac{1}{x} dx = \dots$ $= \infty$

why ?

The Integral Test

Convergence and Divergence of the p-series

For any number p, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is called a p-series. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges by Test for tivergence If p < 0, then $\lim_{n \to \infty} \frac{1}{n^p} = \infty$. If p = 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 1$. In either case, $\lim_{n \to \infty} \frac{1}{n^p} \neq 0$, so the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges by the Test for Divergence. If p > 0, then the function $f(x) = \frac{1}{x^p}$ is continuous, positive and decreasing on $[1,\infty)$. Previous slide: $\int_{1}^{\infty} \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$. So, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if 0 by the Integral Test.

Possible Strategy (so far) Assume $\sum_{n=1}^{\infty} a_n$ is an infinite series with $a_n > 0$ for all n. 1. Check if it is a Geometric Series. No! Go to (2). Yes! If $r \ge 1$ or $r \le -1$, then the series diverges. If -1 < r < 1, then $S = \frac{a_1}{1-r}$. 2. Check if it is a *p*-Series. No! Go to (3). Yes! If $p \le 1$, then the series diverges. If p > 1, then the series converges. 3. Check if $\lim_{k \to \infty} a_k = 0$. (L'Hôpital's Rule is used if necessary) Yes! Then the test is inconclusive. Go to (4). No! Then the series diverges by the Test for Divergence. 4. Check if it is a **Telescoping Series**. No! Go to (5). Yes! Evaluate S_n by cancelling middle terms and $S = \lim S_n$. 5. Use the following Tests: The Integral Test (when a_n is positive, decreasing, and "easy to integrate") More tests to come

Extra practice questions:

Use one of the above methods to determine whether the following series converge.

Divergent a)
$$\sum_{n=1}^{\infty} \frac{1}{(\ln 2)^n}$$
 (feometric series ratio is $(\frac{1}{\ln 2})^n$
 $\ln 2 < \ln e = 1$ so $1 < \frac{1}{\ln 2}$
Divergent by b) $\sum_{n=1}^{\infty} \frac{2^n}{n+1}$ Neither a geometric series nor p-series
 $\lim_{n \to \infty} \frac{2^n}{n+1} = \lim_{n \to \infty} (\ln 2) \frac{2^n}{1} = \infty$
Convergent c) $\sum_{n=1}^{\infty} \frac{2}{n\sqrt{n}}$ p-series $p = \frac{3}{2} > 1$
Divergent d) $\sum_{n=1}^{\infty} \ln(\frac{n+1}{n}) = \sum_{n=1}^{\infty} \ln(n+1) - \ln(n)$ Telescoping series -
See page 4 of Lecture 11.2 note