Review Vocab (meaning of convergence)

Sic 7.8 $\int_{-\infty}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{1}^{t} f(x) dx$ If $\lim_{t \to \infty} \int_{1}^{t} f(x) dx$ is equal to a number,

we say $\int_{1}^{\infty} f(x) dx$ is convergent.

Sec 11.1 If lim ak is equal to a number, k->00 we say {ak} is convergent.

Sec 11.2 $\sum_{k=1}^{\infty} a_k \operatorname{def} \lim_{N \to \infty} \left(\sum_{k=1}^{\infty} a_k \right)$ = $\lim_{N \to \infty} \left(a_1 + a_2 + a_3 + \dots + a_N \right)$

If lim (Zak) is equal to a number,

we say $\sum_{k=1}^{\infty} a_k$ is convergent

A shorter way to say "not convergent" is "divergent".