Infinite Series

If we add the terms of a sequence $\left\{a_{k}\right\}_{k=1}^{n}$, we get an expression of the form

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n} \quad a_{1}+a_{2}+a_{3} \quad a_{2}+a_{3}+a_{4}+a_{5}
$$

which is called a (finite) series and is also denoted by

$$
\sum_{k=1}^{n} a_{k} .
$$

Does it make sense to talk about the sum of infinitely many terms? Consider the partial sums

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3},
\end{aligned}
$$

and, in general,

$$
S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k} . \quad \begin{aligned}
& \text { "First, take the sum of } \\
& \text { the first } n \text { terms" }
\end{aligned}
$$

If the sequence $\left\{S_{n}\right\}_{n=1}^{\infty}=\left\{S_{1}, S_{2}, S_{3}, \ldots\right\}$ of partial sums has limit L, then we say that the infinite series converges to L and we write

$$
\lim _{n \rightarrow \infty} S_{n}=L
$$

same meaning

$$
\sum_{k=1}^{\infty} a_{k}=L
$$

If the sequence $\left\{S_{n}\right\}_{n=1}^{n}$ of partial sums diverges, then we say that the infinite series diverges.

Summary(Notation)

- A sequence converges?

A sequence diverges?
$\lim _{k \rightarrow \infty} a_{k}=L$ (a number),$\left\{a_{k}\right\}$ converges
$\lim _{k \rightarrow \infty} a_{k}$ doesn't exist, $\left\{a_{k}\right\}$ diverges

- A series converges?

$$
\lim _{n \rightarrow \infty}^{\bullet} S_{n}=L, \sum_{k=1}^{\infty} a_{k}=\underset{\substack{\text { a number }}}{L_{k=1}}, \sum_{k=1}^{\infty} a_{k} \text { converges } \left\lvert\, \begin{aligned}
& \lim _{n \rightarrow \infty} S_{n} \text { doesńt exist, A series diverges? } \\
& \sum_{k=1}^{\infty} a_{k} \text { diverges }
\end{aligned}\right.
$$

An important family of infinite series is the geometric series.

$|x|$
 square

Visual example

$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \ldots$

Area of

|xl square is 1
So it seems like
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots$
converges to 1

The highlighted region seems to approach half of the square.
So $\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\ldots$
seems to converge to $\frac{1}{2}$

Recall

- A geometric sequence has the property that each term is obtained by multiplying the previous term by a fixed constant, called the ratio, e.g. $\frac{\{5,10,20,40,80,160, \ldots\}}{\text { ratio }=2}$.
- Given a geometric sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$, if the ratio is r, then the k-th term can be expressed as $a_{k}=\underbrace{a_{1}} \gamma^{k-1}$, e.g. $a_{k}=5 \quad 2^{k-1}$ for $k=1,2,3, \ldots$ first term
- When $-1<r \leq 1$

Geometric Series

Partial Sum of Geometric Series (Textbook Example 2)

Given a geometric sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$, if the ratio is r, then the sum of the first n terms

$$
\begin{array}{r}
S_{n}^{\text {def }} \stackrel{a_{1}}{=}+a_{1} r+a_{1} r^{2}+\cdots+a_{1} r^{n-2}+a_{1} r^{n-1} \\
\text { e.g. } S_{4}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}
\end{array}
$$

is

Why?

$$
\begin{aligned}
& S_{n}-r S_{n}=\underbrace{}_{\text {Therefore, }, \begin{array}{l}
S_{n}-r S_{n} \underline{t} a_{1}-a_{1} r^{n} \\
S_{n}(1-r)=a_{1}\left(1-r^{n}\right)
\end{array},} \\
& S_{n}(1-r)=a_{1}\left(1-r^{n}\right) \\
& \text { hence } S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \text { if } r \neq 1 \text {. }
\end{aligned}
$$

Furthermore, since
 The partial sums $\left\{S_{n}\right\}$ do not converge if $|r| \geqslant 1$

Theorem (Geometric Series)

Let r and a be real numbers.

Let r and a be real numbers. | l $\frac{1}{1-r}$ |
| :--- |
| If $\|r\|<1$, then $\sum_{k=1}^{\infty} a r^{k-1}=a$ |
| If $\|r\| \geq 1$, then $\sum_{k=1}^{\infty} a r^{k-1}$ diverges |$. \begin{aligned} & \end{aligned}$.

Note: In general, it's - very hard to . compute sums of - (convergent) series

- The geometric sequence converges if and only if
- The geometric series converges if and only if

$$
-1<r \leqslant 1
$$

- Sum of a convergent series may change if you change your starting index:

$$
\begin{aligned}
& \text {, } \sum_{k=1}^{\text {term }}\left(\frac{1}{2}\right)^{k}=\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\ldots \stackrel{\text { slide } 1}{=}, \text { the area of a } 1 \times 1 \text { square. } \sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}=\right. \\
& \text {, the area of a } 1 \times 2 \text { rectangle. }
\end{aligned}
$$

first term
If $|r|<1$, then $\sum_{k=1}^{\infty} a r^{k}=a r+a r^{2}+a r^{3}+\ldots=\operatorname{ar}\left[1+r+r^{2}\right.$
mole: Evaluate the (geometric) series $\sum_{k=1}^{\infty} \frac{3^{k}}{4^{k+3}}$ or state that it diverges.
Example: Evaluate the (geometric) series $\sum_{k=1}^{\infty} \frac{3^{k}}{4^{k+3}}$ or state that it diverges.
step a.) State the test you plan to use: Geometric Series The (above)
step b.) (i) Write out the first 4 (four) terms of $\sum_{k=1}^{\infty} \frac{3^{k}}{4^{k+3}}$.
$\frac{3^{1}}{4^{4}} \frac{3^{2}}{4^{5}} \frac{3^{3}}{4^{6}} \quad \frac{3^{4}}{4^{7}} \quad$ Note: To go from $_{k=1}^{3^{2}}$ to $_{4^{5}}^{3^{3}} 4^{6}$, multiply by $\frac{3}{4}$
(((ii) Write our the first 4 (four) terms of $\sum_{k=1}^{\infty} a r^{k-1}$.
a ar $a r^{2} a r^{3}$ rote: To go from $a r^{\prime}$ to $a r^{2}$, multiply by r
(iii) Compare terms to find an a and an r so that $\sum_{k=1}^{\infty} \frac{3^{k}}{4^{k+3}}=\sum_{k=1}^{\infty} a r^{k-1}$.
$a=\frac{3}{4^{4}}$

$$
r=\frac{3}{4}
$$

step c.) After finding the ratio r, determine whether this geometric series converges or not. Since $r=\frac{3}{4}$ is in $(-1,1)$, the series converges to $a \frac{1}{1-r}=\frac{3}{4^{4}}\left(\frac{1}{1-\frac{3}{4}}\right)=\frac{3}{4^{3}}$
Task: (Follow the above example or copy solution from Textbook Example 4, pg 750.) Express $\sum_{k=1}^{\infty} 2^{2 k} 3^{1-k}$ as a geometric series, then determine whether it is convergent or divergent.

Telescoping Series In general, $\sum_{k=1}^{n} f(k)-f(k+4)=f(1)+f(2)+f(3)+f(4)$
Webwork: Evaluate the series $\sum_{k=1}^{\infty} \ln \left(\frac{k}{k+4}\right)$ or state that it diverges.
step a.) Find a formula for the k-th term of the sequence of partial sums $\left\{S_{n}\right\}$

$$
\begin{aligned}
& S_{n}=\sum_{k=1}^{n} \ln (k)-\ln (k+4) \\
& =\underset{\underbrace{k=1}}{\ln (1)}-\ln (5)^{1+4}+\ln (2)-\ln ^{2+4}(6)+\ln (3)-\ln ^{3+4}(7)+\ln (4)-\ln (8) \\
& +\ln (5)-\underset{5+4}{\ln (9)}+\ln (6)-\underset{6+4}{\ln (10)}+\ln (7)-\underset{7+4}{\ln (11)}+\ln (8)-\ln _{8+4}^{(12)} \\
& +\cdots \\
& -\ln (n-1) \quad \begin{array}{l}
k=n-4 \\
(n-4)
\end{array}-\ln \left(\begin{array}{l}
n
\end{array}\right)+\ln (n-3)-\ln (n+1)+\ln \left(n^{k=n-2}-2\right)-\ln (n+2) \\
& +\ln _{k=n-1}^{(n-1)}-\ln (n+3)+\ln _{k=n}(n)-\ln (n+4) \\
& =\underbrace{\ln (2)+\ln (3)+\ln (4)}_{\ln (2 \cdot 3 \cdot 4)}-\ln (n+1)-\ln (n+2)-\ln (n+3)-\ln (n+4)
\end{aligned}
$$

step b.) Evaluate $\lim _{n \rightarrow \infty} S_{n}$ to obtain the sum of the series, or state that the series diverges.

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \underbrace{\ln (24)}_{\text {a number }}-\underbrace{\ln (n+1)-\ln (n+2)-\ln (n+3)-\ln (n+4)}_{\text {So to }-\infty \text { as } n \rightarrow \infty}=-\infty
$$

Task: (Copy solution of Textbook Example 8, pg 752) Compute $\sum_{i=1}^{\infty} \frac{1}{\text { Practice) }}$ or state that it diverges.
step a.) Find a formula for the k-th term of the sequence of partial sums $\left\{S_{n}\right\}$
step b.) Evaluate $\lim _{n \rightarrow \infty} S_{n}$ to obtain the sum of the series, or state that the series diverges.

The Harmonic Series

Theorem (Textbook Example 9)
The harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots=\infty$
So it is divergent

Sec 11.2 (Practice)
If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=1-\frac{1}{N+1}$, evaluate $\sum_{k=1}^{\infty} a_{k}$.
Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges.
Write a letter to your future self (a year from now)
what it means for an infinite series $a_{1}+a_{2}+a_{3}+\ldots$. to be convergent and divergent. Write in complete sentences. Def 2,

If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=-5\left(1-2^{N}\right)$, evaluate $\sum_{k=1}^{\infty} a_{k}$.
Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges.

Assuming the pattern continues, determine if $5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\cdots$ is a geometric series. If so, determine its ratio.

Sec 11.2 (Practice) Answer key
If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=1-\frac{1}{N+1}$, evaluate $\sum_{k=1}^{\infty} a_{k}$. solution: bottom half Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges.

Write a letter to your future self (a year from now)
what it means for an infinite series $a_{1}+a_{2}+a_{3}+\ldots$ to be convergent and divergent. Write in complete sentences. Def 2,

If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=-5\left(1-2^{N}\right)$, evaluate $\sum_{k=1}^{\infty} a_{k}$.
Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges.
Answer: $\lim _{N \rightarrow \infty} \sum_{k=1}^{N} a_{k}=\lim _{N \rightarrow \infty} \underbrace{-5}_{\text {just a number }}+\overbrace{\text { see also bottom of }}^{n}=\infty$ so $\sum_{k=1}^{\infty} a_{k}$ diverges just a number [see also bottom of if 749 (Example 2)]

Assuming the pattern continues, determine if $5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\cdots$ is a geometric series. If so, determine its ratio.

Test for Divergence

Theorem (Textbook Chm 6)

If the series $\sum_{k=1}^{\infty} a_{k}$ is convergent, then $\lim _{k \rightarrow \infty} a_{k}=0$.
What does this theorem say? Recall that to any series $\sum a_{n}$ we associate two sequences:

- the sequence $\left\{a_{\boldsymbol{k}}\right\}$ of its terms, and
- the sequence $\left\{S_{n}\right\}$ of its partial sums.

The theorem says that if $\sum_{k=1}^{n} a_{k}$ converges to a number S, then

$$
\lim _{n \rightarrow \infty} S_{n}=\mathrm{S} \quad \text { and } \lim _{k \rightarrow \infty} a_{k}=0
$$

Caution: If the series $\sum_{k=1}^{\infty} a_{k}$ is divergent, then $\lim _{k \rightarrow \infty} a_{k}$ we cannot say - it depends
Vocab
What is the contrapositive of a statement? Statement: IF P THEN Q
Contrapositive of this statement is "IF (NOT Q) THEN (NOT P)"
E-9. Statement: IF it is snowing, THEN OU is closed
Contrapositive: IF on is not closed, THE N it is not snowing

The

contrapositive
is equivalent to the original statement

Test for Divergence (Textbook Thm 7) Contrapositive of The 6 above

If $\lim _{k \rightarrow \infty} a_{k} \neq 0$ OR if $\lim _{k \rightarrow \infty} a_{k}$ does $\sqrt{ }$ t exist, then the series $\sum_{k=1}^{\infty} a_{k}$ is $\underbrace{\text { NOT convergent. }}_{\text {divergent }}$

Caution: If $\lim _{k \rightarrow \infty} a_{k}=0$, then the test is inconclusive. We cannot use this test to determine convergence/ divergence of $\sum a_{k}$.

Example: Use the Test for Divergence to determine whether the series $\sum_{k=1}^{\infty} \frac{k}{2 k+1}$ diverges, or state that the Test for Divergence is inconclusive.
First step: $\lim _{k \rightarrow \infty} \frac{k}{2 k+1}=\lim _{k \rightarrow \infty} \frac{\left(\frac{k}{k}\right)}{\left(\frac{2}{k}\right)+\frac{1}{k}}=\lim _{k \rightarrow \infty} \frac{1}{2+\frac{1}{k}}=\frac{1}{2}$

Second step: The Test for Divergence is conclusive inconclusive
Since $\lim _{k \rightarrow \infty} \frac{k}{2 k+1} \neq 0$, the series $\sum \frac{k}{2 k+1}$ is divergent

Task: (Copy solution from Example 10, pg 754) Use the Test for Divergence to determine whether the series $\sum_{k=1}^{\infty} \frac{k^{2}}{5 k^{2}+4}$ diverges, or state that the Test for Divergence is inconclusive.

Example: Use the Test for Divergence to determine whether the series $\sum_{k=1}^{\infty} \frac{k}{k^{2}+1}$ diverges, or state that the Test for Divergence is inconclusive.
First step: $\lim _{k \rightarrow \infty} \frac{k}{k^{2}+1}=\lim _{k \rightarrow \infty} \frac{1}{2 k}=0$
L'H" "

Second step: The Test for Divergence is conclusive/ inconclusive Test for Divergence does nut help. will learn tools that work

Properties of Convergent Series

Theorem (Textbook Thm 8)

Suppose c is a number. If $\sum a_{k}$ and $\sum b_{k}$ are convergent series, \ldots

- then the series $\sum c a_{k}$ also converges and $\sum c a_{k}=$ $c \sum a_{k}$
- then the series $\sum a_{k}+\sum b_{k}$ also converges and $\sum a_{k}+b_{k}=\sum a_{k}+\sum b_{k}$

Task: (Copy solution of Example 11, pg 755) Evaluate $\sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}+\frac{1}{2^{n}}\right)$ or state that it diverges.
step a.) First compute $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ to get 1 .
(page 4)

step b.) Next, compute $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ to get 1 .
(page 3)

step c.) By Thm 8, we have $\sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}+\frac{1}{2^{n}}\right)=3\left(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\right)+\left(\sum_{n=1}^{\infty} \frac{1}{2^{n}}\right)=3 \cdot 1+1$.

