# Infinite Series

If we add the terms of a sequence  $\{a_k\}_{k=1}^n$ , we get an expression of the form

$$a_1 + a_2 + a_3 + \dots + a_n$$
  $a_1 + a_2 + a_3$   $a_2 + a_3 + a_4 + a_5$ 

which is called a (finite) series and is also denoted by

noted by  

$$\sum_{k=1}^{n} a_k.$$

$$\sum_{k=1}^{3} a_k$$

$$\sum_{k=2}^{k=2} a_k$$

$$\sum_{k=2}^{k=2} a_k$$

$$\sum_{k=2}^{k=2} a_k$$

ع

Does it make sense to talk about the sum of infinitely many terms? Consider the partial sums

$$S_1 = a_1$$
  

$$S_2 = a_1 + a_2$$
  

$$S_3 = a_1 + a_2 + a_3,$$

and, in general,

$$S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k.$$
 "First, take the sum of the first n terms"

If the sequence  $\{S_n\}_{n=1}^{\infty} = \{S_1, S_2, S_3, ...\}$  of partial sums has limit L, then we say that the infinite series converges to L and we write

$$\lim_{n \to \infty} S_n = L \qquad \longleftrightarrow \qquad \sum_{k=1}^{\infty} a_k = L$$

If the sequence  $\{S_n\}_{n=1}^n$  of partial sums diverges, then we say that the infinite series **diverges**.

| $\operatorname{Summary}(\operatorname{Notation})$                                                           |                                                                             |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| • A sequence converges?<br>$\lim_{k \to \infty} A_k = L$ , $\{A_k\}$ converges<br>$k \to \infty$ (a number) | A <b>sequence</b> diverges?<br>lim ak doesn't exist, [ak] diverges          |
| • A series converges?                                                                                       | $\lim_{n \to \infty} S_n \text{ doesn't exist}, A \text{ series diverges}?$ |
| $n \rightarrow \infty$ $\sum n = L$ , $\sum 4k - L$ , $\sum 4k$ converges<br>k=1, $K=1$<br>a number         | Ž ak diverges                                                               |

An important family of infinite series is the geometric series.

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{2}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{2}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{16} + \dots$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac$$



The highlighted region seems  
to approach half of the square  
So 
$$\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots$$
  
Seems to converge to  $\frac{1}{2}$ 

1

### Recall

- A geometric sequence has the property that each term is obtained by multiplying the previous term by a fixed constant, called the **ratio**, e.g.  $\{5, 10, 20, 40, 90, 160, \dots\}$ .
- Given a geometric sequence  $\{a_k\}_{k=1}^{\infty}$ , if the ratio is r, then the k-th term can be expressed as  $a_k = \underbrace{a_1}_{\text{first term}} \gamma^{k-1}$ , e.g.  $\underline{a_k = 5}_{k=1} 2^{k-1}$  for  $k = 1, 2, 3, \cdots$
- When  $-1 < r \le 1$ , the sequence converges.

# Geometric Series

#### Partial Sum of Geometric Series (Textbook Example 2)

Given a geometric sequence  $\{a_k\}_{k=1}^{\infty}$ , if the ratio is r, then the sum of the first n terms  $S_n \stackrel{\text{def}}{=} a_1 + a_1 r + a_1 r^2 + \dots + a_1 r^{n-2} + a_1 r^{n-1}$ e.g.  $S_4 = a_1 + a_1 r + a_1 r^2 + a_1 r^3$ is (see below).

Why?

$$S_{n} = a_{1} + a_{1}r + a_{1}r^{2} + a_{1}r^{3} + \dots + a_{1}r^{n-2} + a_{1}r^{n-1} + a_{1}r^{n-1} + a_{1}r^{n}$$

$$r S_{n} = 0 \rightarrow a_{1}r + a_{1}r^{2} + a_{1}r^{3} + \dots + a_{1}r^{n-2} + a_{1}r^{n-1} + a_{1}r^{n}$$

$$S_{n} - r S_{n} = a_{1} + 0 + 0 + \dots + 0 + \dots + 0 + \dots + 0 + \alpha_{n}r^{n}$$
Therefore,  $S_{n} - r S_{n} = a_{1} - a_{1}r^{n}$ ,
$$S_{n}(1 - r) = a_{1}(1 - r^{n})$$
hence  $S_{n} = a_{1}(1 - r^{n})$  if  $r \neq 1$ .

Furthermore, since

$$\lim_{n \to \infty} r^n = \begin{cases} \frac{0}{|\mathbf{D} \mathbf{N} \mathbf{E}|} & \text{for } |r| < 1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } r = -1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } |r| > 1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } |r| > 1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } |r| > 1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } |r| > 1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } |r| > 1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } |r| > 1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } |r| > 1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } |r| > 1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } |r| > 1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } |r| > 1 \\ \frac{|\mathbf{D} \mathbf{N} \mathbf{E}|}{|\mathbf{1} - \mathbf{r}|} & \text{for } |\mathbf{1} | \ge 1 \end{cases}$$

1

$$\begin{array}{c|c} \hline \text{Theorem (Geometric Series)}\\ \hline \text{Let $r$ and $a$ be real numbers.}\\ \text{If $|r| < 1$, then $\sum_{k=1}^{\infty} ar^{k-1}$ = $a$ $\frac{1}{1-r}$ \\ \text{If $|r| \ge 1$, then $\sum_{k=1}^{\infty} ar^{k-1}$ $\frac{1}{d^{1}verges}$ \\ \hline \text{If $|r| \ge 1$, then $\sum_{k=1}^{\infty} ar^{k-1}$ $\frac{1}{d^{1}verges}$ \\ \hline \text{If $|r| \ge 1$, then $\sum_{k=1}^{\infty} ar^{k-1}$ $\frac{1}{d^{1}verges}$ \\ \hline \text{If $|r| \ge 1$, then $\sum_{k=1}^{\infty} ar^{k-1}$ $\frac{1}{d^{1}verges}$ \\ \hline \text{If $|r| \ge 1$, then $\sum_{k=1}^{\infty} ar^{k-1}$ $\frac{1}{d^{1}verges}$ \\ \hline \text{If $|r| \ge 1$, then $\sum_{k=1}^{\infty} ar^{k-1}$ $\frac{1}{d^{1}verges}$ \\ \hline \text{If $|r| \ge 1$, then $\sum_{k=1}^{\infty} ar^{k-1}$ $\frac{1}{d^{1}verges}$ \\ \hline \text{If $|r| \ge 1$, then $\sum_{k=1}^{\infty} ar^{k-1}$ $\frac{1}{d^{1}verges}$ \\ \hline \text{If $|r| \ge 1$, then $\sum_{k=1}^{\infty} ar^{k} = \frac{1}{d^{1}verges}$ \\ \hline \text{If $|r| \le 1$, the geometric sequence converges if and only if $-1 < r \le 1$ $(including 1)$ \\ \hline \text{If $|r| \le 1$, then $\int convergent series may change if you change your starting index:$\\ \hline \text{If $|r| \le 1$, the $\frac{1}{2} = \frac{1}{1+1} = \frac{1}{32} + \dots = 1 \\ \hline \text{If $|r| > 1$, the area of a $1 \times 1$ square. $\sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^{k} = $\frac{1}{16} + \frac{1}{32} + \dots = 1 \\ \hline \text{If $|r| < 1$, then $\sum_{k=1}^{\infty} ar^{k} = \frac{ar + ar^{2} + ar^{2} + \dots = ar $\left[1 + r + r^{2} + \dots\right] = ar $\frac{1}{1-r}$ \\ \hline \text{If $|r| < 1$, then $\sum_{k=1}^{\infty} ar^{k} = \frac{ar + 4r^{2} + ar^{2} + \dots = ar $\left[1 + r + r^{2} + \dots\right] = ar $\frac{1}{1-r}$ \\ \hline \text{If $|r| < 1$, then $\sum_{k=1}^{\infty} ar^{k} = \frac{ar + 4r^{2} + ar^{2} + \dots = ar $\left[1 + r + r^{2} + \dots\right] = ar $\frac{1}{1-r}$ \\ \hline \text{If $|r| < 1$, then $\sum_{k=1}^{\infty} ar^{k} = \frac{ar + 4r^{2} + ar^{2} + ar^{2} + \dots = ar $\left[1 + r + r^{2} + \dots\right] = ar $\frac{1}{1-r}$ \\ \hline \text{If $|r| < 1$, then $\sum_{k=1}^{\infty} ar^{k} = \frac{ar + 4r^{2} + ar^{2} + ar^{2} + \dots = ar $\left[1 + r + r^{2} + \dots\right] = ar $\frac{1}{1-r}$ \\ \hline \text{If $|r| < 1$, then $\sum_{k=1}^{\infty} ar^{k} = \frac{ar + ar^{2} + ar^{2} + ar^{2} + \dots = ar $\left[1 + r + r^{2} + \dots\right] = ar $\frac{1}{1-r}$ \\ \hline \text{If $|r| < 1$, then $\sum_{k=1}^{\infty} ar^{k} = \frac{ar + ar^{2} + ar^{2} + ar^{2} + \dots = ar $\sum $\left[1 + r + r^{2} + \dots \right] = ar $\frac{1}{1-r}$ \\ \hline \text{If $|r| > br $\sum $\sum_{k=1}^{\infty} ar^{k} = \frac{ar + ar^{2} +$$

step c.) After finding the ratio r, determine whether this geometric series converges or not. Since  $r = \frac{3}{4}$  is in (-1, 1), the series converges to  $q = \frac{1}{1-r} = \frac{3}{44} \left( \frac{1}{1-3} \right) = \frac{3}{4^3}$ <u>Task:</u> (Follow the above example or copy solution from Textbook Example 4, pg 750.) Express  $\sum_{k=1}^{\infty} 2^{2k} 3^{1-k}$  as a geometric series, then determine whether it is convergent or divergent.

# Telescoping Series

step a.) Find a formula for the k-th term of the sequence of **partial sums**  $\{S_n\}$ 

$$S_{n} = \sum_{k=1}^{n} \ln(k) - \ln(k+4)$$

$$= \ln(1) - \ln(5) + \ln(2) - \ln(6) + \ln(3) - \ln(7) + \ln(4) - \ln(8)$$

$$+ \ln(5) - \ln(9) + \ln(6) - \ln(10) + \ln(7) - \ln(11) + \ln(8) - \ln(12)$$

$$\frac{1}{5+4} + \cdots$$

$$- \ln(n-1) + \ln(n-4) - \ln(n-1) + \ln(n-3) - \ln(n+1) + \ln(n-2) - \ln(n+2)$$

$$+ \ln(n-1) - \ln(n+3) + \ln(n) - \ln(n+4)$$

$$= \ln(2) + \ln(3) + \ln(4) - \ln(n+1) - \ln(n+2) - \ln(n+3) - \ln(n+4)$$

$$= \ln(2) + \ln(3) + \ln(4) - \ln(n+1) - \ln(n+2) - \ln(n+3) - \ln(n+4)$$
step b.) Evaluate  $\lim_{n \to \infty} S_{n}$  to obtain the sum of the series, or state that the series diverges.
$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \int_{0}^{1} \ln(2+1) - \ln(n+2) - \ln(n+3) - \ln(n+4) = -\infty$$

$$= \frac{1}{2} \ln(2+1) - \ln(n+1) - \ln(n+2) - \ln(n+3) - \ln(n+4) = -\infty$$

$$= \frac{1}{2} \lim_{n \to \infty} \int_{0}^{\infty} \ln(2+1) - \ln(n+2) - \ln(n+3) - \ln(n+4) = -\infty$$

$$= \frac{1}{2} \lim_{n \to \infty} \int_{0}^{\infty} \ln(2+1) - \ln(n+2) - \ln(n+3) - \ln(n+4) = -\infty$$

$$= \frac{1}{2} \lim_{n \to \infty} \int_{0}^{\infty} \ln(2+1) - \ln(n+2) - \ln(n+3) - \ln(n+4) = -\infty$$

$$= \frac{1}{2} \lim_{n \to \infty} \int_{0}^{\infty} \ln(2+1) - \ln(n+2) - \ln(n+3) - \ln(n+4) = -\infty$$

$$= \frac{1}{2} \lim_{n \to \infty} \int_{0}^{\infty} \ln(2+1) - \ln(n+2) - \ln(n+3) - \ln(n+4) = -\infty$$

$$= \frac{1}{2} \lim_{n \to \infty} \int_{0}^{\infty} \ln(2+1) - \ln(n+2) - \ln(n+3) - \ln(n+4) = -\infty$$

$$= \frac{1}{2} \lim_{n \to \infty} \int_{0}^{\infty} \ln(2+1) - \ln(n+2) - \ln(n+3) - \ln(n+4) = -\infty$$

$$= \frac{1}{2} \lim_{n \to \infty} \int_{0}^{\infty} \ln(2+1) - \ln(n+2) - \ln(n+3) - \ln(n+4) = -\infty$$

step a.) Find a formula for the k-th term of the sequence of **partial sums**  $\{S_n\}$ 

step b.) Evaluate  $\lim_{n\to\infty} S_n$  to obtain the sum of the series, or state that the series diverges.

## The Harmonic Series

Theorem (Textbook Example 9)  
The harmonic series 
$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \infty$$
  
So it is divergent.

The textbook explains why in Sec 11.2 using partial sums and in Sec 11.3 using improper integrals. will explain in Sec 11.3

Sec II.2 (Practice)

If  $a_1 + a_2 + a_3 + \dots + a_N = 1 - \frac{1}{N+1}$ , evaluate  $\sum_{k=1}^{\infty} a_k$ . Determine whether  $\sum_{k=1}^{\infty} a_k$  converges.

write a letter to your future self (a year from now) what it means for an infinite series  $a_1 + a_2 + a_3 + \dots$ to be convergent and divergent. Write in complete sentences.  $p_2$  748

If 
$$a_1 + a_2 + a_3 + \dots + a_N = -5(1-2^N)$$
, evaluate  $\sum_{k=1}^{\infty} a_k$ .  
Determine whether  $\sum_{k=1}^{\infty} a_k$  converges.

Assuming the pattern continues, determine if  $5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$ is a geometric series. If so, determine its ratio.

| lf a1 + a2 + a3 t<br>Determine wh                 | $e + q_N = 1 - \frac{1}{N+1}$ $e + q_N = 1 - \frac{1}{N+1}$ $e + q_N = 1 - \frac{1}{N+1}$               | evaluate<br>s.                                                            | $\sum_{k=1}^{\infty} a_k  . \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | olution: bot<br>of<br>P <del>8</del> | tom half<br>Example 8,<br>.752 |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|
| write a lette<br>what it me<br>to be conve        | r to your futur<br>ans for an infinite<br>rgent and diverge                                             | e self (a<br>series<br>nt. Write i                                        | year from<br>$a_1 + a_2 + a_3 +$<br>in complete s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | now)<br><br>entences.                | Riferenci<br>Def 2,<br>1974    |
| lf a1+a2+a3+<br>Determine v<br>Answer: Lir<br>N-> | whether $\sum_{k=1}^{\infty} q_k$ convertion<br>$\sum_{k=1}^{N} q_k = \lim_{N \to \infty} \frac{-5}{2}$ | ) evaluate<br>ges.<br>ges to oo<br>+ 5.2 <sup>7</sup> = oo<br>number [see | $\sum_{k=1}^{\infty} a_k.$ $a_k = 1$ $a_k = botism of 18.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>dī verges</b><br>49 (Example 2)]  | _                              |
| Assuming the p<br>is a geometric                  | attern continues, de<br>series. If so, de                                                               | etermine if<br>termine its                                                | $5 - \frac{10}{3} + \frac{20}{9} - \frac{10}{3} + \frac{20}{9} - \frac{10}{3} + \frac{20}{9} - \frac{10}{3} + \frac{10}{9} - \frac{10}{9} + \frac{10}{9} - \frac{10}{9} + \frac{10}{9} - \frac{10}$ | $-\frac{40}{27}+\cdots$              | Sol:<br>Example<br>P3 75       |

txample 3. Pg 750

8-9

The

## Test for Divergence

If the series  $\sum_{k=1}^{\infty} a_k$  is convergent, then  $\lim_{k \to \infty} a_k = \mathcal{O}$ 

What does this theorem say? Recall that to any series  $\sum a_n$  we associate two sequences:

- the sequence  $\{a_k\}$  of its **terms**, and
- the sequence  $\{S_n\}$  of its **partial sums**.

The theorem says that if  $\sum_{k=1}^{n} a_k$  converges to a number S, then  $\lim_{n \to \infty} S_n = \underbrace{\mathsf{S}}_{\mathbf{k} \to \infty} \quad \text{and} \quad \lim_{\mathbf{k} \to \infty} a_{\mathbf{k}} = \underbrace{\mathsf{O}}_{\mathbf{k} \to \infty}$ <u>Caution</u>: If the series  $\sum_{k=1}^{\infty} a_k$  is divergent, then  $\lim_{k\to\infty} a_k$  we cannot say - if depends Vocab What is the contrapositive of a statement? Statement: IF P THEN Q Contrapositive of this statement is "IF (NOT Q) THEN (NOT P)" Statement: IF it is snowing, THEN OU is closed Contrapositive: IF OU is not closed, THEN it is not snowing Test for Divergence (Textbook Thm 7) Contrapositive of Thm 6 above contrapositive is equivalent If  $\lim_{k \to \infty} a_k \neq 0$  or if  $\lim_{k \to \infty} a_k$  does of  $e \times i$  then the series  $\sum_{k=1}^{\infty} a_k$  is <u>NOT</u> convergent. to the original statement

> **Caution:** If  $\lim_{k \to \infty} a_k = \mathcal{O}$ , then **the test is inconclusive**. We cannot use this test to determine convergence/divergence of  $\sum a_{\mathbf{k}}$ .

> **Example:** Use the Test for Divergence to determine whether the series  $\sum_{k=1}^{\infty} \frac{k}{2k+1}$  diverges, or state that the Test for Divergence is inconclusive.

First step: 
$$\lim_{k \to \infty} \frac{k}{2k+1} = \lim_{k \to \infty} \frac{\binom{k}{k}}{\binom{2k}{k} + \frac{1}{k}} = \lim_{k \to \infty} \frac{1}{2 + \frac{1}{k}} = \frac{1}{2}$$

Second step: The Test for Divergence is conclusive/)inconclusive

Since  $\lim_{k \to \infty} \frac{k}{2k+1} \neq 0$ , the series  $\sum \frac{k}{2k+1}$  is divergent

**Practice**) <u>Task</u>: (Copy solution from Example 10, pg 754) Use the Test for Divergence to determine whether the series  $\sum_{k=1}^{\infty} \frac{k^2}{5k^2+4}$  diverges, or state that the Test for Divergence is inconclusive.

**Example:** Use the Test for Divergence to determine whether the series  $\sum_{k=1}^{\infty} \frac{k}{k^2+1}$  diverges, or state that the Test for Divergence is inconclusive.

First step: 
$$\lim_{k \to \infty} \frac{k}{k^2 + 1} = \lim_{\phi \to \infty} \frac{1}{2k} = 0$$
  
 $L'H \xrightarrow{"\infty"}$ 

Second step: The Test for Divergence is conclusive/inconclusive) Test for Divergence doesn't help Will learn tools that work

in Sec 11.3, 11.4

Properties of Convergent Series

```
Theorem (Textbook Thm 8)
```

Lecture 11.2

Suppose c is a number. If  $\sum a_k$  and  $\sum b_k$  are convergent series, ...

- then the series  $\sum c a_k$  also converges and  $\sum c a_k = -c \sum a_k$
- then the series  $\sum a_k + \sum b_k$  also converges and  $\sum a_k + b_k = \sum a_k + \sum b_k$

<u>**Task:**</u> (Copy solution of Example 11, pg 755) Evaluate  $\sum_{n=1}^{\infty} \left( \frac{3}{n(n+1)} + \frac{1}{2^n} \right)$  or state that it diverges.

step a.) First compute  $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$  to get 1. Page 4)

Do at I

step b.) Next, compute  $\sum_{n=1}^{\infty} \frac{1}{2^n}$  to get 1. (page 3)

step c.) By Thm 8, we have  $\sum_{n=1}^{\infty} \left( \frac{3}{n(n+1)} + \frac{1}{2^n} \right) = 3 \left( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \right) + \left( \sum_{n=1}^{\infty} \frac{1}{2^n} \right) = 3 \cdot 1 + 1.$