Suppose for $|x-a|<R$, we have

$$
\left.f(x) \stackrel{\downarrow}{=} c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+\cdots,\right\} \begin{gathered}
\text { power series } \\
\text { centered at a }
\end{gathered}
$$

then $f(a)=c_{0}$. We can differentiate both sides with respect to x to get

$$
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+\cdots
$$

then $f^{\prime}(a)=c_{1}$. Again, we have

$$
f^{\prime \prime}(x)=\quad 2 c_{2}+3(2) c_{3}(x-a)+4(3) c_{4}(x-a)^{2}+5(4) c_{5}(x-a)^{3}+\ldots
$$

then $f^{\prime \prime}(a)=2 C_{2} \quad$. Apply the procedure again to obtain

$$
f^{\prime \prime \prime}(x)=\quad 3(2) c_{3}+4(3)(2) c_{4}(x-a)+5(4)(3) C_{5}(x-2)^{2}+\ldots
$$

then $f^{\prime \prime \prime}(a)=3(2) C_{3} \quad$. Apply the procedure one more time to obtain

$$
f^{(4)}(x)=\quad 4(3)(2) c_{4}+5(4)(3)(2) c_{5}(x-2)+\ldots
$$

then $f^{(4)}(a)=4(3)(2) C_{4} \quad$. By now you can see the pattern. If we continue to differentiate and substitute $x=a$, we obtain

$$
\begin{aligned}
f^{(n)}(a) & =n(n-1)(n-2) \cdots(2) C_{n} \\
& =n!C_{n}
\end{aligned}
$$

So

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

Webwork Problem 1

If $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n} \quad$ and $\quad f(0)=14, \quad f^{\prime}(0)=-15, \quad f^{\prime \prime}(0)=-1, \quad f^{\prime \prime \prime}(0)=-1$, find the first four terms of $\sum_{n=0}^{\infty} c_{n} x^{n}$.
Answer $\quad c_{0}=\frac{f(0)}{0!}=14 \quad c_{1}=\frac{f^{\prime}(0)}{1!}=-15 \quad c_{2}=\frac{f^{\prime \prime \prime}(0)}{2!}=-\frac{1}{2} \quad c_{3}=\frac{f^{\prime \prime \prime}(0)}{3!}=-\frac{1}{6}$

$$
14-15 x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}
$$

Theorem

IF f has a power series representation at $x=a$, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad \text { for } \quad|x-a|<R,
$$

THEN its coefficients are given by

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =\underbrace{f(a)}_{C_{0}}+\underbrace{f^{\prime}(a)}_{C_{1}}(x-a)+\underbrace{\frac{f^{\prime \prime}(a)}{2!}}_{C_{2}}(x-a)^{2}+\underbrace{\frac{f^{\prime \prime \prime}(a)}{3!}}_{C_{3}}(x-a)^{3}+\cdots
\end{aligned}
$$

The series is called the Taylor series of the function f at $x=a$. For the special case when $a=0$, the Taylor series becomes

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots \cdots
$$

This case arises frequently enough that it is given the special name Maclaurin series.

Textbook Example 1

Find the Maclaurin series of the function $f(x)=e^{x}$ and its interval of convergence.
We want to find $\sum_{n=0}^{\infty} c_{n} x^{n}$ where $c_{n}=\frac{f^{(n)}(0)}{n!}$
$f^{(n)}(x)=e^{x}$ for all n $f^{(n)}(0)=e^{0}=1$ for all n, all x $C_{n}=\frac{1}{n!}$ for all n, so the Maclaurin series is $\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$

Find radius of convergence (using Ratio Test): Let $a_{n}=\frac{x^{n}}{n!}$ $\frac{a_{n+1}}{a_{n}}=\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}=\frac{x}{n+1}$
$\lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{n+1}\right|=|x| \lim _{n \rightarrow \infty} \frac{1}{n+1}=0$ for all x So radius of convergence is ∞.
Interval of convergence is $(-\infty, \infty)$.

Theorem (Textbook Example 2)

$$
\sum^{\infty} \frac{x^{n}}{n!}
$$

The function $f(x)=e^{x}$ is equal to its Maclaurin series \qquad for all x.

Application: Approximate a non-rational number like e (that is, write the first few digits in decimal) on a computer by computing the sum of the first few terms of the series.
$1 / e$ is equal to the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}
$$

Webwork Problem 10 For the following indefinite integral, find the full power series centered at $x=0$

$$
\begin{aligned}
& f(x)=C+\sum_{n=1}^{\infty} l \quad f(x)=\int \frac{e^{9 x}-1}{2 x} d x \\
& e^{9 x}=\sum_{n=0}^{\infty} \frac{(9 x)^{n}}{n!}=\sum_{n=0}^{\infty} 9^{n} \frac{1}{n!} x^{n} \\
& \frac{e^{9 x}}{2 x}=\frac{1}{2} \sum_{n=0}^{\infty} 9^{n} \frac{1}{n!} x^{n-1}=\frac{1}{2}\left[9^{0} \frac{1}{0!} \frac{1}{x}+\sum_{n=1}^{\infty} 9^{n} \frac{1}{n!} x^{n-1}\right] \\
& \int \frac{e^{9 x}}{2 x} d x=\frac{1}{2}\left[\ln x+\sum_{n=1}^{\infty} 9^{n} \frac{1}{n!} \frac{x^{n}}{n}\right]+C \\
& \int \frac{1}{2 x} d x=\frac{1}{2} \ln x+D \\
& \text { So the final answer is } \sum_{n=1}^{\infty} \frac{9^{n}}{2} \frac{1}{n!} \frac{1}{n} x^{n}+C
\end{aligned}
$$

Example Compute the Maclaurin eris for $\cos x$.

$$
\begin{aligned}
& f(x)=\cos x \quad f(0)=1 \quad \text { The pattern repeats } f(4 n)(0)=1 \\
& f^{\prime}(x)=-\sin x \\
& f^{\prime \prime}(x)=-\cos x \\
& f^{\prime \prime \prime}(x)=\sin x \\
& f^{\prime}(0)=0 \quad \text { in a cycle of four } f(4 n+1)(0)=0 \\
& f^{\prime \prime}(0)=-1 \\
& f^{(4)}(x)=\cos x \\
& f^{\prime \prime \prime}(0)=0 \\
& f^{(4 n+2)}(0)=-1 \\
& f^{(4 n+3)}(0)=0 \\
& \text { The Maclaurin series is } 1 x^{0}-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\frac{1}{8!} x^{8}+\ldots \\
& \text { (Reindex so that } n=0 \quad n=1 \quad n=2 \quad n=3 \quad n=4 \text {) } \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
\end{aligned}
$$

Fact: The Maclaurin series for $\cos x$ is equal to $\cos x$.

Copy Example 4, pg 804

Copy the computation for the Maclaurin series for $\sin x$ (you can skip the proof that the Maclaurin series is equal to $\sin x$).
Do after class

Webwork Problem 2 Find the Taylor series for $f(x)=\ln x$ centered at 10 . (ii) Find the interval of convergence.

$$
f^{\prime}(x)=\frac{1}{x}
$$

$$
f^{\prime \prime}(x)=-\frac{1}{x^{2}}
$$

$$
f^{\prime \prime \prime}(x)=\frac{2}{x^{3}}
$$

$$
f^{(4)}(x)=-\frac{3.2}{x^{4}}
$$

$$
f^{(5)}(x)=\frac{4.3 .2}{x^{5}}
$$

$$
f^{(6)}(x)=-\frac{5 \cdot 4.3 .2}{x^{6}}
$$

$$
f^{(7)}(x)=\frac{6 \cdot 5 \cdot 4 \cdot 3.2}{x^{7}}
$$

Practice
Pattern for $n \geqslant 1$:

$$
f^{(n)}(x)=\frac{(n-1)!}{x^{n}}(-1)^{n-1}
$$

So $c_{n}=\frac{f^{(n)}(10)}{n!}=\frac{(n-1)!(-1)^{n-1}}{10^{n}} \frac{1}{n!}=\frac{(-1)^{n-1}}{10^{n} n}$

$$
\sum_{n=0}^{\infty} \underbrace{f^{(n)}(10)}_{C_{n}}(x-10)^{n}=\ln 10+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{10^{n} n}(x-10)^{n}
$$

(ii) Find radius of convergence (using Ratio Test): Let $a_{n}=\frac{(-1)^{n-1}}{10^{n} n}(x-10)^{n}$

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{(x-10)^{n+1}}{10^{n+1}(n+1)} \cdot \frac{10^{n} n}{(x-10)^{n}}\right|=\left|\frac{(x-10)}{10} \frac{n}{n+1}\right|
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x-10}{10} \frac{n}{n+1}\right|=\left|\frac{x-10}{10}\right| \lim _{n \rightarrow \infty} \frac{n}{n+1}=\left|\frac{x-10}{10}\right|
$$

By Ratio Test, $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges when $\left|\frac{x-10}{10}\right|<1$
$\Leftrightarrow|x-10|<10)^{\text {This }}$ is the radius of convergence

$$
\begin{aligned}
-10 & <x-10
\end{aligned}<10010<10+10
$$

Check $x=10-10=0: \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{10^{n} n}(-10)^{n}=\sum_{n=0}^{\infty}(-1)^{n-1}(-1)^{n} \frac{10^{n}}{10^{n}} \frac{1}{n}=\sum_{n=0}^{\infty}-\frac{1}{n}$ is the Harmonic series (divergent)
Check $x=10+10=20: \sum_{n=0}^{\infty} \frac{(-1)^{n}(10)^{n}}{10^{n} n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n}$ is convergent by Alternating Series Test ($\left\{\frac{1}{n}\right\}$ is a decreasing sequence
Page 5 of 6
Interval of Convergence: $(0,20]$

Commonly used Maclaurin Series, see Table 1 page 808.

- $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $-1<x<1$.
- $\frac{1}{1+x}=\frac{\frac{1}{1-(-x)}=\sum_{n=0}^{\infty}(-x)^{n}}{\text { - } \ln (1-x)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n} \text { for }-1 \leq x<1 .}$.
$>\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}=\sum_{n=1}^{\infty} \frac{\left(\frac{1}{2}\right)^{n}}{n}=-\ln \left(1-\frac{1}{2}\right)=-\ln \left(\frac{1}{2}\right)=\ln (2)$
- $\ln (1+x)=\underline{\ln (1-(-x))}=-\sum_{n=1}^{\infty} \frac{(-x)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n} \quad$ for $\quad-1<x \leqslant 1$
- $\arctan \mathrm{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$ for $-1 \leq x \leq 1$.

$$
>\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=\underline{\arctan (1)=\frac{\pi}{4}}
$$

- $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for $-\infty<x<\infty$.

$$
>\sum_{n=0}^{\infty} \frac{1}{n!}=e^{\prime}
$$

- $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ for $-\infty<x<\infty$.

$$
>\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{(2 n+1)!}=\sin (\pi)=0 .
$$

- $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \quad$ for for all x

