Sec II.1 Sequences

A sequence is an ordered collection of objects Examples * A sequence of letters * △■<u>○</u>▲□♥△ _ _ _ ... In calculus, a <u>sequence</u> is a list of numbers indexed by the natural numbers 1,2,3,4,... Notation: $\{a_1, a_2, a_3, \ldots, a_n, \ldots\}$ or $\{a_n\}$ or $\{a_n\}_{n=1}^{\infty}$ The index doesn't have to start at 1, ex $\{a_n\}_{n=0}^{\infty}$ or $\{a_n\}_{n=5}^{\infty}$ Examples of sequences * 1,3,5,7,9,... is the sequence of odd natural numbers formula an= 2n-1 for n=1,2,3,... * $\{a_n\}_{n=1}^{\infty}$ where $a_n = 2n^2 - 3n + 1$. Write the first three terms of $\{a_n\}_{n=1}^{\infty}$ $a_1 = 2(1)^2 - 3(1) + 1 = 0$ $a_2 = 2(4) - 3(2) + 1 = 3$ $a_3 = 2(9) - 3(3) + 1 = 10$

X Find a formula for the general term an for the sequence
$$[1, -3, 5, -7, 7, ...]$$
:
If starting index is $n=1$: $a_n = (2n-1)(-1)^{n+1}$ for $n=1,2,3,...$ or $a_n = -(2n-1)(-1)^n$
If starting index is $n=0$: $a_n = (2n+1)(-1)^n$ for $n=0,1,2,...$
X Find a formula for the general term an of the sequence $[\frac{2}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3125}, ...]$:
If starting index is $n=1$: $a_1^{"}$ $a_2^{"}$ $a_3^{"}$ $a_4^{"}$ $a_3^{"}$
If starting index is $n=1$: $a_1^{"}$ $a_2^{"}$ $a_3^{"}$ $a_4^{"}$ $a_3^{"}$
If starting index is $n=1$: $a_1^{"}$ $a_2^{"}$ $a_3^{"}$ $a_4^{"}$ $a_3^{"}$
The signs alternate positive & negative, so we need to multiply by $(-1)^{n+1}$ or $(-1)^{n-1}$.
Numerators are $3, 4, 5, 6, 7, ...$: $(n+2)$ in general $a_1^{"}$ $a_2^{"}$ $a_3^{"}$ $a_4^{"}$ $a_5^{"}$
Denominators are $5, 25, 125, 625, 3125$: $5^{"}$ in general $5^{"}$ 5^{2} 5^{2} 5^{2} 5^{2} 5^{2} $5^{"}$ in general $5^{"}$ 5^{2} 5^{2} 5^{2} $5^{"}$ in general $a_1^{"}$ $a_2^{"}$ $a_3^{"}$ $a_4^{"}$ $a_5^{"}$
 $a_1 = (-1)^{n+1}$ $\frac{n+2}{5"}$ for $n=1,2,3,...$

. If starting index is n=0: $a_n = (-1)^n \frac{n+3}{5^{n+1}}$ or $\frac{(-1)^n}{5} \frac{n+3}{5^n}$ for n=0,1,2,... * The Fibonacci sequence is defined recursively by $a_{1}=1$, $a_{2}=1$, $a_{n+2}=a_{n}+a_{n+1}$ for n=1,2,3,...each term is the sum of the previous two terms First few terms of the Fibonacci sequence: در ۱, ۱, ۱, ۵, ۵, ۶, ۶, ۱з, ۲۱, ... ² * The sequence $a_n = \frac{n}{n+1}$ for n=1, 2, 3, ...Table: Graph: $1 + \frac{2}{3} + \frac{2$ (The terms of $q_n = \frac{n}{n+1}$ seem to approach 1 as n gets large.) The difference $1 - a_n = 1 - \frac{n}{n+1}$ = n+1-n $=\frac{1}{(n+1)}$ Can be made as small as we like by taking large enough n. The notation for this is $\lim_{n \to \infty} \frac{n}{n+1} = 1$. In general, writing $\lim_{n \to \infty} q_n = L$ means:

the terms of the sequence {an} approach L as n becomes large.

$$\frac{\text{New vocab}}{\text{* A sequence }} (\text{a number})$$

$$\frac{\text{* A sequence }}{\text{* A sequence }} (\text{a n}) \text{* has } \text{!imit } \bot \text{* }$$

$$we write \quad \text{Lim } \text{* } \text{* } \text{an } = \bot \text{ or } \text{ write } \text{* } \text$$

$$= \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}}$$

$$= \frac{\left(\lim_{n \to \infty} 2\right)}{\left(\lim_{n \to \infty} 1\right) + \left(\lim_{n \to \infty} \frac{1}{n}\right)}$$

$$= \frac{2}{1 + 0} = 2$$
(a number)

New vocab
Writing
$$\lim_{n \to \infty} a_n = \infty$$
 means:
for every positive number M,
no matter how big
there is an integer N such that
if $n > N$ then $a_n > M$.
Say $[a_n]$ diverges to ∞ .
Ex Is $a_n = \frac{-n}{\sqrt{10+n}}$ convergent?
 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{-n}{\sqrt{10+n}} \frac{(\frac{1}{n})}{(\frac{1}{n})}$
 $= \lim_{n \to \infty} \frac{-1}{\sqrt{10+n}}$ numerator $= -1 \rightarrow -1$ as $n \Rightarrow \infty$
 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{-1}{\sqrt{10+n}}$ numerator $= \sqrt{\frac{10}{n^2 + \frac{1}{n}}} \rightarrow 0$ as $n \Rightarrow \infty$
 $= -\infty$
x $\lim_{n \to \infty} a_n$ does not exist, so $[a_n]$ diverges
(is not convergent).

)

* $\lim_{n \to \infty} a_n = -\infty$ means $\{a_n\}$ diverges in a special way: Say $\{a_n\}$ diverges to $-\infty$.

$$\frac{\text{Thm}}{\text{If } \lim_{x \to \infty} f(x) = L \text{ and } f(n) = a_n \text{ when } n \text{ is an integer}, \\ \text{then } \lim_{n \to \infty} a_n = L \quad (\text{Upshot: We can replace } x \text{ with } n) \\ \frac{\text{Ex}}{n \to \infty} \left(Application of Thm \right) \quad \text{Calculate } \lim_{n \to \infty} \frac{\ln n}{n} : \\ \text{Let } f(x) = \frac{\ln x}{x}, \\ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{(\frac{1}{x})}{1} \stackrel{(x)}{=} 0 \\ \lim_{n \to \infty} f(x) = a_n \quad \text{for } n = 1, 2, 3, \dots, \text{ we can apply above Thm}: \\ \lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x) = 0, \\ \lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x) = 0, \\ \lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x) = 0, \\ \lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x) = 0. \\ \lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x) = 0. \\ \lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x) = 0. \\ \lim_{x \to \infty} a_n = \lim_{x \to \infty} \frac{1}{n} = 0. \end{cases}$$

The (Limit laws for convergent sequences)
If [an] and [bn] are convergent sequences and c is a number,
then * lim (an + bn) = lim an + lim bn

$$n \to \infty$$

* lim c an = c lim an
 $n \to \infty$
* lim (an bn) = (lim an
 $n \to \infty$
* lim (an bn) = (lim an)(lim bn)
 $n \to \infty$
* lim $\frac{a_n}{b_n} = \frac{n \to \infty}{lim b_n}$
if lim bn $\neq 0$
 $n \to \infty$

$$\frac{Squeeze Thm}{If \# a_n \leq b_n \leq C_n \quad for \quad n \geq N, \quad AND}$$

$$\# \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$$

$$THEN \qquad \lim_{n \to \infty} b_n = L$$

$$\left(\begin{array}{ccc} If \quad b_n \text{ is bounded above k below by} \\ + uo \ sequences \ converging \ to \ L, \\ - then \ b_n \ converges \ to \ L. \end{array}\right)$$

$$Thm \\ (Special case \qquad If \quad \lim_{n \to \infty} |b_n| = 0 \quad then \quad \lim_{n \to \infty} b_n = 0.$$

$$\frac{E \times (of \quad squeeze \quad Thm)}{|s|}$$

$$|s||_{bn} = \frac{(-1)^{n}}{n} \quad convergent \quad ?$$

$$\dim \quad \left| b_{n} \right| = \quad \dim \quad \left| \frac{(-1)^{n}}{n} \right|$$

$$= \quad \lim_{n \to \infty} \quad \frac{1}{n}$$

$$= 0$$
By Squeeze Thm,
$$\lim_{n \to \infty} b_{n} = 0.$$
So
$$\lim_{n \to \infty} b_{n} = exists.$$
So
$$\left\{ b_{n} \right\} \text{ is } \text{ convergent.}$$

$$\frac{\text{Thm}}{n \to \infty} \text{ If } \dim a_n = L \text{ and } \text{function } f \text{ is continuous at } L,$$

$$\frac{\text{then } \dim f(a_n) = f(\lim_{n \to \infty} a_n) = f(L)}{n \to \infty}$$

$$\text{Upshot: } \text{ can } \text{bring } \lim_{n \to \infty} \text{ inside } \text{brackets if}}{f \text{ is continuous } \text{ at } L.}$$

$$\frac{\text{Ex } (\text{of thm})}{\lim_{n \to \infty} \sin\left(\frac{\pi}{n}\right)} = ?$$

$$\text{Let } a_n := \frac{\pi}{n}. \quad \text{Then } \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\pi}{n} = 0.$$

$$\text{Let } f(a) := \sin x. \quad \text{Then } f(x) \text{ is continuous } \text{ at } 0.$$

$$\text{So } \dim f(a_n) = f(\lim_{n \to \infty} a_n) = f(0)$$

$$\lim_{n \to \infty} \sin\left(\frac{\pi}{n}\right) = \sin\left(\lim_{n \to \infty} a_n\right) = \sin(0) = 0.$$

$$\lim_{n \to \infty} \sin\left(\frac{\pi}{n}\right) = \sin\left(\lim_{n \to \infty} \frac{\pi}{n}\right) = \sin(0) = 0.$$

$$\lim_{n \to \infty} \lim_{n \to \infty} \frac{\pi}{n} = 1$$

New Vocab (memorize)

$$a_n = r^n$$
 (like $a_n = (\frac{1}{2})^n$, $a_n = (2^n)$, $a_n = 1^n$, $a_n = (-1)^n$)
 $a_n = r^n$ (like $a_n = (\frac{1}{2})^n$, $a_n = (2^n)$, $a_n = 1^n$, $a_n = (-1)^n$)
is called a geometric sequence.
 \underbrace{tx} $\lim_{n \to \infty} (\frac{1}{2})^n = 0$, say $[\frac{1}{2}]^n$ converges to a
 $\#$ $\lim_{n \to \infty} 1^n = 1$, say $[1]^n$ converges to 1
 $\#$ $\lim_{n \to \infty} 2^n = \infty^n$, say $[2^n]^n$ diverges to ∞
 $\#$ $\lim_{n \to \infty} 2^n = \infty^n$, say $[2^n]^n$ diverges to ∞
 $\#$ $\lim_{n \to \infty} (-\frac{2}{3})^n = 0$ by Squeeze Thm.
 $\#$ $\lim_{n \to \infty} (-\frac{2}{3})^n = 0$ by Squeeze Thm.
 $\#$ $\lim_{n \to \infty} (\frac{2}{3})^n = 0$ by Squeeze Thm.
 $\#$ $\lim_{n \to \infty} (\frac{2}{3})^n = 0$ by Squeeze Thm.
 $\#$ $\lim_{n \to \infty} (\frac{2}{3})^n = 0$ by Squeeze Thm.
 $\#$ $\lim_{n \to \infty} (\frac{2}{3})^n = 0$ by $\lim_{n \to \infty} [(-1)^n]$ diverges.
 $\#$ $\lim_{n \to \infty} (\frac{2}{3})^n$ does and exist. Say $[(-\frac{2}{2})^n]$ diverges.
 $\#$ $\lim_{n \to \infty} (\frac{2}{3})^n$ does and exist. Say $[(-\frac{2}{2})^n]$ diverges.
 $\lim_{n \to \infty} (\frac{2}{3})^n$ does and exist. Say $[(-\frac{2}{2})^n]$ diverges.
 $\lim_{n \to \infty} (-\frac{2}{3})^n = 0$ if $-1 \le r \le 1$.
 $\lim_{n \to \infty} (1^n - 1)^n$
 $\lim_{n \to \infty} (1^$

New vocab
*
$$[a_n]_{is} increasing if a_n < a_{n+1}$$
 for all $n \ge 1$:
 $a_1 < a_2 < a_3 < \dots$
* $[a_n]_{is} \frac{decreasing}{decreasing} if a_n > a_{n+1}$ for all $n \ge 1$:
 $a_1 > a_2 > a_3 > \dots$
* $[a_n]_{is} monotonic if it is either increasing or decreasing.
Ex is $\frac{3}{n+5}$ monotonic ?
 $a_1 = \frac{3}{6} > a_2 = \frac{3}{7} > a_3 = \frac{3}{5} > \dots$
 $a_n = \frac{3}{1+5} > a_{n+1} = \frac{3}{n+6}$ for all $n = (1, 2, \dots)$
So $[a_n]_{is} \frac{decreasing}{decreasing}$, so $[a_n]_{is} \frac{monotonic}{n}$.
New vocab
* $[a_n]_{is} \frac{bounded}{above}$ if there is a number M
Such that $a_n \le M$ for all $n \ge 1$.$

Monotonic Sequence Them
If fang is bounded and monotonic, then fang converges.

$$\frac{Ex}{1 + 5} \left\{ \frac{3}{n + 5} \right\}$$
is decreasing and bounded,
so by the monotonic sequence them,
 $\left\{ \frac{3}{n + 5} \right\}$ converges.

$$\frac{True \text{ or false }}{1 + 5} \quad \text{converges.}$$

$$\frac{True \text{ or false }}{1 + 5} \quad \text{converges.}$$

$$\frac{True \text{ or false }}{1 + 5} \quad \text{converges.}$$

$$\frac{True \text{ or false }}{1 + 5} \quad \text{converges.}$$

$$\frac{True \text{ or false }}{1 + 5} \quad \text{convergent.}$$
False. Counter example:
 $\left\{1, -1, 1, -1, \dots\right\}$ is bounded by -1 and 1
but it diverges.
2. If fang is monotonic, then fang is convergent.
False. Counter example:
Let $a_n = n + Then fang$ is increasing
 $but \lim_{n \to \infty} a_n = \infty$
so fang is divergent.
3. If fang is convergent, then fang is monotonic,
False. Counter example: $a_n = \frac{G(n)^n}{1 + 5}$ is convergent
but not monotonic (neither increasing nor decreasing).