Sec 11.1 Sequences

A sequence is an ordered collection of objects
Examples

* A sequence of letters

In calculus, a sequence is a list of numbers indexed by the natural numbers $1,2,3,4, \ldots$
Notation: $\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right\}$ or $\left\{a_{n}\right\}$ or $\left\{a_{n}\right\}_{n=1}^{\infty}$ The index doesr't have to start at 1 , ex $\left\{a_{n}\right\}_{n=0}^{\infty}$ or $\left\{a_{n}\right\}_{n=5}^{\infty}$

Examples of sequences

* $1,3,5,7,9, \ldots$ is the sequence of odd natural numbers formula $a_{n}=2 n-1$ for $n=1,2,3, \ldots$
* $\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{n}=2 n^{2}-3 n+1$.
write the first three terms of $\left\{a_{n}\right\}_{n=1}^{\infty}$

$$
\begin{aligned}
& a_{1}=2(1)^{2}-3(1)+1=0 \\
& a_{2}=2(4)-3(2)+1=3 \\
& a_{3}=2(9)-3(3)+1=10
\end{aligned}
$$

* Find a formula for the general term a_{n} for the sequence $\{1,-3,5,-7,9, \ldots\}$:

If starting index is $n=1$: $a_{n}=(2 n-1)(-1)^{n+1}$ for $n=1,2,3, \ldots$

$$
\text { or } a_{n}=-(2 n-1)(-1)^{n}
$$

If starting index is $n=0: a_{n}=(2 n+1)(-1)^{n}$ for $n=0,1,2, \ldots$

* Find a formula for the general term a_{n} of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \frac{7}{3125}, \ldots\right\}:
$$

- If starting index is $n=1: \quad \begin{array}{llllll}\prime \prime & a_{1}^{\prime \prime} & a_{2}^{\prime \prime} & a_{3}^{\prime \prime} & a_{4}^{\prime \prime} & a_{5}^{\prime \prime}\end{array}$
- The signs alternate positive \& negative, so we need to multiply by $(-1)^{\text {(something) }} a_{1}$ is positive, so multiply by $(-1)^{n+1}$ or $(-1)^{n-1}$.
- Numerators are $3,4,5,6,7, \cdots:(n+2)$ in general

$$
\begin{array}{lllll}
a_{1}^{\prime \prime} & a_{2}^{\prime \prime} & a_{3}^{\prime \prime} & a_{4}^{\prime \prime} & a_{5}^{\prime \prime}
\end{array}
$$

- Denominators are 5,25,125,625,3125: 5^{n} in general $\begin{array}{ccccc}5^{1} & 5^{2} & 5^{3} & 5^{4} & 5^{5} \\ a_{1}^{\prime \prime} & a_{2}^{\prime \prime} & a_{3}^{\prime \prime} & a_{4}^{\prime \prime} & a_{5}^{\prime \prime}\end{array}$

$$
a_{n}=(-1)^{n+1} \frac{n+2}{5^{n}} \text { for } n=1,2,3, \ldots
$$

- If starting index is $n=0: a_{n}=(-1)^{n} \frac{n+3}{5^{n+1}}$ or $\frac{(-1)^{n}}{5} \frac{n+3}{5^{n}}$ for $n=0,1,2, \ldots$
* The Fibonacci sequence is defined recursively by

$$
a_{1}=1, \quad a_{2}=1, \quad a_{n+2}=a_{n}+a_{n+1} \quad \text { for } \quad n=1,2,3, \ldots
$$

each term is the sum of the previous two terms First few terms of the Fibonacci sequence:

$$
\{1,1,2,3,5,8,13,21, \ldots\}
$$

* The sequence $a_{n}=\frac{n}{n+1}$ for $n=1,2,3, \ldots$

Table:

n	1	2	3	4	\cdots	n
a_{n}	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{5}$	\cdots	$\frac{n}{n+1}$

Graph:

(The terms of $a_{n}=\frac{n}{n+1}$ seem to approach 1 as n gets large.)
The difference $1-a_{n}=1-\frac{n}{n+1}$

$$
\begin{aligned}
& =\frac{n+1-n}{n+1} \\
& =\frac{1}{n+1}
\end{aligned}
$$

Can be made as small as we like by taking large enough n.
The notation for this is $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$.
In general, writing $\lim _{n \rightarrow \infty} a_{n}=L$ means:
the terms of the sequence $\left\{a_{n}\right\}$ approach L as n becomes large.

New vocab (memorize)

* A sequence $\left\{a_{n}\right\}$ has limit L^{b} \&
we write $\lim _{n \rightarrow \infty} a_{n}=L$ or write $a_{n} \rightarrow L$ as $n \rightarrow \infty$ if we can make the terms a_{n} as close to L as we like by taking n sufficiently large.
* If $\lim _{n \rightarrow \infty} a_{n}$ exists, say $\left\{a_{n}\right\}$ converges (or is convergent). (is a number)
* Otherwise, say $\left\{a_{n}\right\}$ diverges (or is divergent or is not convergent).

Ex is the sequence $a_{n}=\frac{2 n}{n+1}$ Convergent or divergent?

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{2 n}{n+1} & =\lim _{n \rightarrow \infty} \frac{2 n}{n+1} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{2}{\frac{n}{n}+\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2}{1+\frac{1}{n}} \\
& =\frac{\left(\lim _{n \rightarrow \infty} 2\right)}{\left(\lim _{n \rightarrow \infty} 1\right)+\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)} \\
& =\frac{2}{1+0}=2
\end{aligned}
$$

* We say: $\left\{a_{n}\right\}$ has limit 2.
* Since $\lim _{n \rightarrow \infty} \frac{2 n}{n+1}$ exists, we say $\left\{a_{n}\right\}$ is convergent.

New vocab
Writing $\lim _{n \rightarrow \infty} a_{n}=\infty$ means: for every positive number M,
no matter how big
there is an integer N such that if $n>N$ then $a_{n}>M$.
Say $\left\{a_{n}\right\}$ diverges to ∞.
$\lim _{n \rightarrow \infty} a_{n}=-\infty$ means:
for every positive number M, there is an integer N such that
if $n>N$ then $a_{n}<-M$.
Say $\left\{a_{n}\right\}$ diverges to $-\infty$.

Ex Is $a_{n}=\frac{-n}{\sqrt{10+n}}$ convergent?

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{-n}{\sqrt{10+n}} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{-1}{\sqrt{\frac{10}{n^{2}}+\frac{n}{n^{2}}}} \\
& =\lim _{n \rightarrow \infty} \frac{-1}{\sqrt{\frac{10}{n^{2}}+\frac{1}{n}}} \quad \text { numerator }=-1 \rightarrow-1 \quad \text { as } n \rightarrow \infty \\
& \text { denominator }=\sqrt{\frac{10}{n^{2}}+\frac{1}{n}} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

* $\lim _{n \rightarrow \infty} a_{n}$ does not exist, so $\left\{a_{n}\right\} \frac{\text { diverges }}{\text { dis }}$ (is not convergent).
* $\lim _{n \rightarrow \infty} a_{n}=-\infty$ means $\left\{a_{n}\right\}$ diverges in a special way: Say $\left\{a_{n}\right\}$ diverges to $-\infty$.

The Let f be any function.
If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when n is an integer, then $\lim _{n \rightarrow \infty} a_{n}=L$ (Upshot: We can replace x with n)

Ex (Application of Chm) Calculate $\lim _{n \rightarrow \infty} \frac{\ln n}{n}$:
Let $f(x)=\frac{\ln x}{x}$.

$$
\begin{gathered}
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)}{1} \stackrel{(x)}{=}=0 \\
\text { 1'Hospital's Rule } \\
\text { type " } \frac{\infty \text { " }}{\infty}
\end{gathered}
$$

Since $f(n)=a_{n}$ for $n=1,2,3, \ldots$, we can apply above Thu:

$$
\lim _{n \rightarrow \infty} a_{\text {Tho }_{m}} a_{x \rightarrow \infty} \quad \lim _{x y} f(x)=0 .
$$

Thy (Limit laws for convergent sequences)
If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and c is a number, then * $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$

* $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}$
* $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)$
* $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$ if $\lim _{n \rightarrow \infty} b_{n} \neq 0$

Squeeze Thu
If $* a_{n} \leq b_{n} \leq c_{n}$ for $n \geqslant N$, AND

* $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$

THEN $\quad \lim _{n \rightarrow \infty} b_{n}=L$
(If b_{n} is bounded above x below by two sequences converging to L, then b_{n} converges to L.)

Thy
(special case
If $\lim _{n \rightarrow \infty}\left|b_{n}\right|=0$ then $\lim _{n \rightarrow \infty} b_{n}=0$. of squeeze Thm)

Ex (of squeeze Chm)
Is $b_{n}=\frac{(-1)^{n}}{n}$ convergent?

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|b_{n}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{n}\right| \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \\
& =0
\end{aligned}
$$

By Squeeze Tho, $\lim _{n \rightarrow \infty} b_{n}=0$. So $\lim _{n \rightarrow \infty} b_{n}$ exists.
So $\left\{b_{n}\right\}$ is convergent.

Thu If $\lim _{n \rightarrow \infty} a_{n}=L$ and function f is continuous at L, then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(L)$

Upshot: can bring $\lim _{n \rightarrow \infty}$ inside brackets if f is continuous at L.

Ex (of the)

$$
\lim _{n \rightarrow \infty} \sin \left(\frac{\pi}{n}\right)=?
$$

Let $a_{n}:=\frac{\pi}{n}$. Then $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\pi}{n}=0^{\text {. }}$.
Let $f(x)=\sin x$. Then $f(x)$ is continuous at 0 "L
So $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(0)$
by Chm

$$
\lim _{n \rightarrow \infty} \sin \left(\frac{\pi}{n}\right)=\sin \left(\lim _{n \rightarrow \infty} \frac{\pi}{n}\right)=\sin (0)=0
$$

by Tho

New vocab (memorize)
$a_{n}=r^{n} \quad\left(\right.$ like $\left.a_{n}=\left(\frac{1}{2}\right)^{n}, a_{n}=(-2)^{n}, a_{n}=1^{n}, a_{n}=(-1)^{n}\right)$ "ratio" is called a geometric sequence.

Ex $\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}=0$, say $\left\{\frac{1}{2^{n}}\right\}$ converges to 0

* $\lim _{n \rightarrow \infty} 1^{n}=1$, say $\{1\}$ converges to 1
* $\underbrace{\lim _{n \rightarrow \infty} 2^{n}=\infty^{\infty} \text {, } \text {,es not exist } \text { nay }\left\{2^{n}\right\} \text { diverges to } \infty}$
* $\lim _{n \rightarrow \infty}\left(-\frac{2}{3}\right)^{n}=0$ by squeeze Thm.

Say $\left\{\left(-\frac{2}{3}\right)^{n}\right\}$ converges to 0 .

* $\lim _{n \rightarrow \infty}(-1)^{n}$ does nit exist. Say $\left\{(-1)^{n}\right\}$ diverges.
* $\lim _{n \rightarrow \infty}\left(-\frac{3}{2}\right)^{n}$ doesrrt exist. Say $\left[\left(-\frac{3}{2}\right)^{n}\right\}$ diverges.

Fact The geometric sequence $\left\{r^{n}\right\}$
is convergent if $-1<r \leq 1$: (like $r=1, \frac{1}{2},-\frac{2}{3}$)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} r^{n}=0 \text { if }-1<r<1 \\
& \lim _{n \rightarrow \infty} 1^{n}=1
\end{aligned}
$$

$\left\{r^{n}\right\}$ diverges if $r \leqslant-1$ or $1<r\left(\right.$ like $\left.r=-1,-\frac{3}{2}, 2\right)$

New vocab

* $\left\{a_{n}\right\}$ is increasing if $a_{n}<a_{n+1}$ for all $n \geqslant 1$:

$$
a_{1}<a_{2}<a_{3}<\cdots
$$

* $\left\{a_{n}\right\}$ is decreasing if $a_{n}>a_{n+1}$ for all $n \geqslant 1$:

$$
a_{1}>a_{2}>a_{3}>\cdots
$$

* \{an is monotonic if it is either increasing or decreasing.

Ex is $\frac{3}{n+5}$ monotonic?

$$
\begin{aligned}
& a_{1}=\frac{3}{6}>a_{2}=\frac{3}{7}>a_{3}=\frac{3}{8}>\ldots \\
& a_{n}=\frac{3}{n+5}>a_{n+1}=\frac{3}{n+6} \quad \text { for all } n=1,2, \ldots
\end{aligned}
$$

So $\left\{a_{n}\right\}$ is decreasing, so $\left\{a_{n}\right\}$ is monotonic.

New vocab

* $\left\{a_{n}\right\}$ is bounded above if there is a number M such that $a_{n} \leq M$ for all $n \geqslant 1$.
* $\left\{a_{n}\right\}$ is bounded below if there is a number m such that $m \leq a_{n}$ for all $n \geqslant 1$.
* Say $\left\{a_{n}\right\}$ is bounded if
$\left\{a_{n}\right\}$ is bounded above and below.
Ex $\quad \frac{3}{n+5}$
lower bounds:

$$
0,-\frac{1}{2}
$$

upper bounds:

$$
\frac{3}{6}, 1,1000
$$

Monotonic Sequence Thu
If $\left\{a_{n}\right\}$ is bounded and monotonic, then $\left\{a_{n}\right\}$ converges.
Ex $\left\{\frac{3}{n+5}\right\}$ is decreasing and bounded, so by the monotonic sequence the, $\left\{\frac{3}{n+5}\right\}$ converges.

True or false?

1. If a sequence $\left\{a_{n}\right\}$ is bounded, then $\left\{a_{n}\right\}$ is convergent.

False. Counterexample:
$\{1,-1,1,-1, \ldots\}$ is bounded by -1 and 1 but it diverges.
2. If $\left\{a_{n}\right\}$ is monotonic, then $\left\{a_{n}\right\}$ is convergent.

False. Counterexample:
Let $a_{n}=n$. Then $\left\{a_{n}\right\}$ is increasing

$$
\text { but } \lim _{n \rightarrow \infty} a_{n}=\infty
$$

so $\left\{a_{n}\right\}$ is divergent.
3. If $\left\{a_{n}\right\}$ is convergent, then $\left\{a_{n}\right\}$ is monotonic.

False. Counterexample: $a_{n}=\frac{(-1)^{n}}{n}$ is convergent but not monotonic (neither increasing nor decreasing).

