Sec 10.4 Part I: Areas in polar coordinates
Area of the sector of a circle swept out by a $\frac{\pi}{2}$ angle with radius r is $\frac{1}{4} r^{2} \pi=\frac{1}{2} r^{2}\left(\frac{\pi}{2} ;\right.$

Ray $\theta=\frac{\pi}{2}$

Area of the sector of a circle swept out by an angle A with radius r is $\frac{1}{2} r^{2}(A)$ Here 1 replace $\frac{\pi}{2}$ with A

$$
\text { Ray } \theta=A
$$

$$
A=\beta-\alpha
$$

The area of the region bounded by the graph $r=f(\theta)$ between two rays $\theta=\alpha$ and $\theta=\beta$ is

$$
\int_{\alpha}^{\beta} \frac{1}{2}[f(\theta)]^{2} d \theta \text { or think } \int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta
$$

Make sure $\alpha<\beta$

Example:\#1
Find the area enclosed by one loop of the four-leaved rose $r=4 \cos 2 \theta$. Perform a reality check against your result.

Step 1: sketch the polar curve

$$
r(\theta)=4 \cos (2 \theta)
$$

Step 2:

Apply area formula

$$
\begin{aligned}
& \text { Area }=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2}[r(\theta)]^{2} d \theta=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2}[4 \cos 2 \theta]^{2} d \theta=\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} 4^{2}[\cos (2 \theta)]^{2} d \theta \\
& =\int^{\frac{\pi}{4}} \frac{1}{2} 4^{2} \frac{(\sec 7 \cdot 2)}{1+\cos (4 \theta)} 2 \int^{\frac{\pi}{4}} 4(1+\cos (4 \theta) d \theta \\
& -\frac{\pi}{4} \\
& =\left.4\left[\theta+\frac{\sin (4 \theta)}{4}\right]\right|_{-\frac{\pi}{4}} ^{\frac{\pi}{4}}=4^{\frac{\pi}{4}}\left[\left[\frac{\pi}{4}+\frac{\sin \pi}{4}\right]-\left[-\frac{\pi}{4}+\frac{\sin (-\pi)}{4}\right]\right] \\
& -\frac{\pi}{4}=2 \pi \quad(\text { about } 6, \underset{\text { reasonable) }}{\text { looks }}
\end{aligned}
$$

Example \#2
Find the area of the shaded region enclosed by the polar curve $r=\sqrt{\theta}$.
Answer:
The curve is an infinite spiral for θ in $[0, \infty$)
 but the shaded region is enclosed by the curve $r=\sqrt{\theta}$ from 0 to 2π (and the positive polar $a \times i s$).

So the area of the shaded region is

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{1}{2}(\sqrt{\theta})^{2} d \theta & =\int_{0}^{2 \pi} \frac{1}{2} \theta d \theta \\
& =\left.\frac{1}{2} \frac{\theta^{2}}{2}\right|_{0} ^{2 \pi} \\
& =\frac{(2 \pi)^{2}}{4}-0 \\
& =\pi^{2}
\end{aligned}
$$

Example \#3
Find the area of the region inside the larger loop and outside the smaller loop of the polar curve

$$
r=1+2 \cos \theta
$$

(1) Sketch curve

$0=1+2 \cos \theta$
$\begin{aligned}-\frac{1}{2}=\cos \theta \Rightarrow \theta & =\pi-\frac{\pi}{3}=\frac{2 \pi}{3} \\ \theta & =\pi\end{aligned}$
$\theta=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}$
curve for $0 \leq \theta \leq \pi$:

(2) Compute area inside the larger loop A Larger

Alarger is twice the area of the shaded region

$$
\begin{aligned}
A_{\text {larger }} & =2 \int_{0}^{\frac{2 \pi}{3}} \frac{1}{2}(1+2 \cos \theta)^{2} d \theta \\
& =\int_{0}^{\frac{2 \pi}{3}} 1+4 \cos \theta+4 \cos ^{2} \theta d \theta \\
& =\int_{0}^{\frac{2 \pi}{3}} 1+4 \cos \theta+\frac{4}{2}(1+\cos (2 \theta)) d \theta \\
& =2 \pi+\frac{3}{2} \sqrt{3} \\
& \left(\operatorname{con}^{-} t \rightarrow\right)
\end{aligned}
$$

cont with (2)
Alternatively, we can compute area inside the larger loop by bounding the curve between rays $\theta=-\frac{2 \pi}{3}$ and $\theta=\frac{2 \pi}{3}$

$$
\begin{aligned}
& \theta=\frac{-2 \pi}{3} \\
& =\cdots
\end{aligned}
$$

$$
\left[\begin{array}{l}
\text { use trig identity } \\
(\cos x)^{2}=\frac{1+\cos (2 x)}{2}
\end{array}\right]
$$

$$
\begin{aligned}
& =\int_{-\frac{2 \pi}{3}}^{\frac{2 \pi}{3}} \frac{3}{2}+2 \cos \theta+\cos (2 \theta) d \theta \\
& =\frac{3}{2} \theta+2 \sin \theta+\left.\frac{\sin (2 \theta)}{2}\right|_{\theta=-\frac{2 \pi}{3}} ^{\theta=\frac{2 \pi}{3}} \\
& =\left[\frac{3}{2} \frac{2 \pi}{3}+2 \sin \frac{2 \pi}{3}+\frac{\sin \left(\frac{4 \pi}{3}\right)}{2}\right]-\left[\frac{3}{2}\left(-\frac{2 \pi}{3}\right)+2 \sin \left(-\frac{2 \pi}{3}\right)+\frac{\sin \left(-\frac{4 \pi}{3}\right)}{2}\right] \\
& =2 \pi+4 \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2} \\
& =2 \pi+\frac{3}{2} \sqrt{3}
\end{aligned}
$$

(3) Compute area inside the smaller loop

$$
\left(\operatorname{con}^{\prime} t \rightarrow\right)
$$

(Cont with (3))
(3) Compute area inside the smaller loop A Smaller Asmaller is twice the area of the shaded region
 Alternative method

$$
\begin{aligned}
A_{\text {smaller }} & =2 \int_{\frac{2 \pi}{3}}^{\pi} \frac{1}{2}(1+2 \cos \theta)^{2} d \theta \\
& =\pi-\frac{3}{2} \sqrt{3}
\end{aligned}
$$

(4) Compute the area of the region inside the larger loop and outside the smaller loop.

The desired area is the area from step (2) minus the area from step (3).

$$
\begin{aligned}
A & =A_{\text {Larger }}-A_{\text {smaller }} \\
& =\left(2 \pi+\frac{3}{2} \sqrt{3}\right)-\left(\pi-\frac{3}{2} \sqrt{3}\right) \\
& =\pi+3 \sqrt{3}
\end{aligned}
$$

Example: \#4
Find the area of the region that lies inside the circle $r=3 \sin \theta$ and outside the cardioid $r=1+\sin \theta$. Perform a reality check against your result.

Draw unit circle w/ $\theta=\frac{\pi}{6}, \frac{\pi}{3}, \frac{2 \pi}{3}, \frac{5 \pi}{6}$ and labels

inside cardioid

Find α and β : Set circle= cardioid
(between 0 and 2π)

$$
\begin{aligned}
& 3 \sin \theta=1+\sin \theta \\
& 2 \sin \theta=1
\end{aligned}
$$

$$
\theta=\frac{\pi}{6}, \frac{5 \pi}{6}
$$

$$
\sin \theta=\frac{1}{2} \Rightarrow \quad \text { so } \alpha=\frac{\pi}{6}, \beta=\frac{5 \pi}{6}
$$

$$
\theta=5 \frac{\pi}{6}
$$

$$
\text { Area }=\int_{\theta=\frac{\pi}{6}}^{6} \frac{1}{2}\left(r_{\text {circle }}\right)^{2} d \theta-\int_{\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{2}\left(r_{\text {cardioid }}\right)^{2} d \theta
$$

$$
A=\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(3 \sin \theta)^{2} d \theta-\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(1+\sin \theta)^{2} d \theta
$$

Since the region is symmetric about the vertical axis $\theta=\pi / 2$, we can write

$$
\begin{aligned}
A & =2\left[\frac{1}{2} \int_{\pi / 6}^{\pi / 2} 9 \sin ^{2} \theta d \theta-\frac{1}{2} \int_{\pi / 6}^{\pi / 2}\left(1+2 \sin \theta+\sin ^{2} \theta\right) d \theta\right] \\
& =\int_{\pi / 6}^{\pi / 2}\left(8 \sin ^{2} \theta-1-2 \sin \theta\right) d \theta \\
& =\int_{\pi / 6}^{\pi / 2}(3-4 \cos 2 \theta-2 \sin \theta) d \theta \quad\left[\text { because } \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)\right] \\
& =3 \theta-2 \sin 2 \theta+2 \cos \theta]_{\pi / 6}^{\pi / 2}=\pi
\end{aligned}
$$

Sec 10.4 Part II: Lengths in polar coordinates
Goal:
Find the length of a polar curve $r=f(\theta), a \leq \theta \leq b$. Write the parametric equations of the curve with θ as parameter: Conversion formula from 10.3

$$
\begin{aligned}
& x=r \cos \theta=f(\theta) \cos \theta \\
& y=r \sin \theta=f(\theta) \sin \theta
\end{aligned}
$$

Arc length formula

$$
\int_{t=a}^{t=b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \underset{\text { parameter }}{\text { if } t \text { is the }}
$$

from 10.2:

$$
\int_{\theta=a}^{\theta=b} \sqrt{\left(\frac{d}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta \quad \begin{aligned}
& \text { if } \theta \text { is the } \\
& \text { parameter }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \frac{d x}{d \theta}=\frac{d}{d \theta}[f(\theta) \cos \theta]=\frac{d f}{d \theta} \cos \theta+f(\theta)(-\sin \theta)=\frac{d f}{d \theta} \cos \theta-\sin \theta f(\theta) \\
& \text { - } \frac{d y}{d \theta}=\frac{d}{d \theta}[f(\theta) \sin \theta]=\frac{d f}{d \theta} \sin \theta+f(\theta) \cos \theta \\
& \left(\frac{d x}{d \theta}\right)^{2}=\left(\frac{d f}{d \theta}\right)^{2}(\cos \theta)^{2}-2 \frac{d f}{d \theta} \cos \theta \sin \theta f(\theta)+(f(\theta))^{2}(\sin \theta)^{2} \\
& \left(\frac{d y}{d \theta}\right)^{2}=\left(\frac{d f}{d \theta}\right)^{2}(\sin \theta)^{2}+2 \frac{d f}{d \theta} \sin \theta f(\theta) \cos \theta+(f(\theta))^{2}(\cos \theta)^{2} \\
& \left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}=\left(\frac{d f}{d \theta}\right)^{2}[(\underbrace{(\cos \theta)^{2}+(\sin \theta)^{2}}_{1}]+[f(\theta)]^{2}[(\underbrace{\left.\sin \theta)^{2}+(\cos \theta)^{2}\right]}_{1}+ \\
& =\left(\frac{d f}{d \theta}\right)^{2}+(f(\theta))^{2} \\
& \left(\cos ^{\prime} t \rightarrow\right)
\end{aligned}
$$

So $\sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}}=\sqrt{\left(\frac{d r}{d \theta}\right)^{2}+(f(\theta))^{2}}$ (or $\sqrt{\left(\frac{d r}{d \theta}\right)^{2}+r^{2}}$ for short
Since the curve is defined by $r=f(\theta))$

So Arc length is $\int_{\theta=a}^{\theta=b} \sqrt{\left(\frac{d r}{d \theta}\right)^{2}+r^{2}} d \theta$

Webwork
Recall: $r=3 \sin (\theta)$ is a circle:

Find the exact length of the polar curve

$$
r=3 \sin (\theta), 0 \leq \theta \leq \pi / 3
$$

$$
\frac{d r}{d \theta}=3 \cos \theta, \quad\left(\frac{d r}{d \theta}\right)^{2}=3^{2}(\cos \theta)^{2}
$$

$$
\begin{aligned}
r=3 \frac{y}{r} & \Rightarrow r^{2}=3 y \\
& \Rightarrow x^{2}+y^{2}=3 y \\
\tau / 3 . & \Rightarrow x^{2}+y^{2}-3 y+1.5^{2}=1.5^{2} \\
& \Rightarrow x^{2}+\left(y-\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
\end{aligned}
$$

$$
r=3 \sin \theta, \quad \frac{r^{2}=3^{2}(\sin \theta)^{2}}{r}+
$$

$$
\int_{\theta=0}^{\theta=\frac{\pi}{3}} \sqrt{\left(\frac{d r}{d \theta}\right)^{2}+r^{2}} d \theta=\int_{0}^{\frac{\pi}{3}} 3 d \theta=\left.3 \theta\right|_{\theta=0} ^{\theta=\frac{\pi}{3}}=3 \frac{\pi}{3}=\pi
$$

