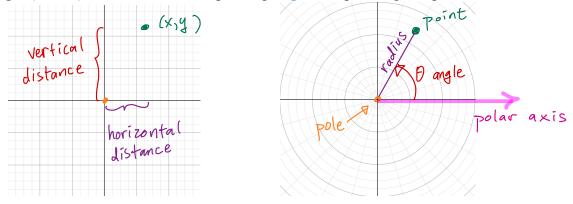
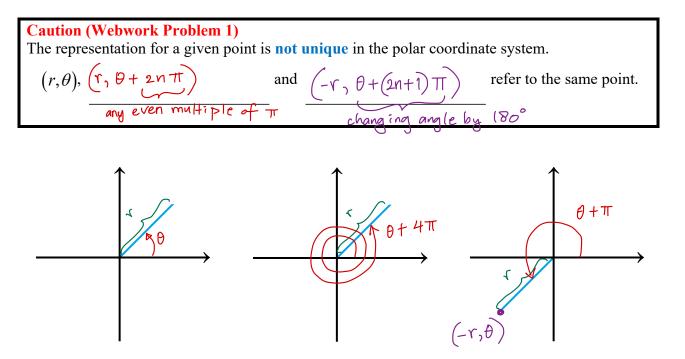
Polar Coordinates

(In Multivariable Calculus: polar coordinates \rightarrow cylindrical and spherical coordinates in 3D)

Instead of using **horizontal distance** and **vertical distance** from the axes, we use the distance from the origin (**radius**) as well as the corresponding **angle** to express a given point.



- The origin is called the **pole**.
- The positive *x*-axis is called the **polar axis**.
- The polar coordinates for a point P have the form (r, θ) , where ...
 - \circ r is the distance from the origin to P, and
 - θ is an angle starting from the positive *x*-axis and ending on the ray that passes through the pole and the point P.
- Positive angles are measured **counterclockwise** from the positive *x*-axis.



The origin is specified as $(0, \theta)$ in polar coordinates, where θ is any angle.

 $cos(\pi+\theta) = -cos(\theta)$ sin($\pi+\theta$) = $-sin(\theta)$ y y y y y

r

Polar Coordinates

$$5\frac{\pi}{4} = \pi + \frac{\pi}{4}$$

Find other representations for the same point (Webwork Problem 1):

Graph the point
$$\begin{pmatrix} 1, \frac{5\pi}{4} \end{pmatrix}$$
 in polar coordinates. Give two alternative representations for the point.

$$\frac{-\sqrt{2}}{2} = \frac{\cos\left(\frac{5\pi}{4}\right)}{\sqrt{4}} \qquad \theta = \pi + \frac{\pi}{4} \qquad \left(1, \frac{5\pi}{4} + 2\pi\right), \left(1, \frac{5\pi}{4} - 2\pi\right) \\ -\frac{\sqrt{2}}{2} = \frac{\sin\left(\frac{5\pi}{4}\right)}{\sqrt{4}} \qquad \left(-1, \frac{5\pi}{4} + \pi\right), \left(-1, \frac{5\pi}{4} - 3\pi\right)$$

Ð

Converting Between Cartesian and Polar Coordinates

Procedure Converting Coordinates
A point with polar coordinates
$$(r, \theta)$$
 has Cartesian coordinates (x, y) , where
 $x = \begin{pmatrix} herizental \\ distance \end{pmatrix} = r \cos \theta$, $y = \begin{pmatrix} ver+ical \\ distance \end{pmatrix} = r \sin \theta$

A point with Cartesian coordinates (x, y) has polar coordinates (r, θ) , where

$$r = \left(\begin{array}{c} \text{distance} \\ \text{from pole} \end{array} \right) = \left(\begin{array}{c} x^2 + y^2 \\ y^2 \end{array} \right) \quad \theta = \left(\begin{array}{c} \text{angle from} \\ \text{polar axis} \end{array} \right) = \arctan\left(\begin{array}{c} \frac{y}{x} \end{array} \right)$$

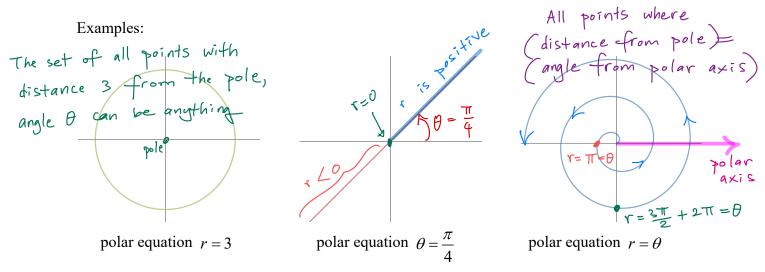
Polar to Cartesian (Webwork Problem 2):
$$r \theta$$

Express the point with polar coordinates $\begin{pmatrix} 2, \frac{3\pi}{4} \end{pmatrix}$ in Cartesian coordinates.
 $x = r \cos \theta = 2 \cos \frac{3\pi}{4} = -\sqrt{2}$
 $y = r \sin \theta = 2 \sin \frac{3\pi}{4} = \sqrt{2}$
 $y = r \sin \theta = 2 \sin \frac{3\pi}{4} = \sqrt{2}$
Answer : $(-\sqrt{2}, \sqrt{2})$
Cartesian to polar (Webwork Problem 4):
Express the point with Cartesian coordinates $(1, -1)$ in polar coordinates.
 $= \sqrt{x^2 + y^2} = \sqrt{1 + 1} = \sqrt{2}$

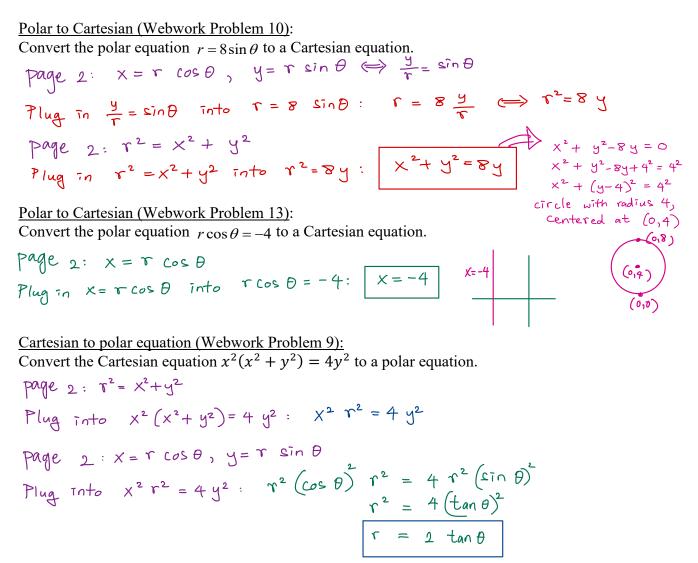
 $\theta = -\frac{\pi}{4} \text{ or } -\frac{\pi}{4} + 2n\pi$ (from picture or compute $\theta = \arctan\left(\frac{-1}{1}\right) = -\frac{\pi}{4}$)

Converting Between Cartesian and Polar Equations

A curve in polar coordinates is the set of points that satisfy an equation in r and θ . Some sets of points are easier to describe in polar coordinates than in Cartesian coordinates.



(Graph with Desmos: https://www.desmos.com/calculator/j6ha36k9zi)



Graphing in Polar Coordinates

Sketch the polar equation $r = 1 + \sin \theta$.

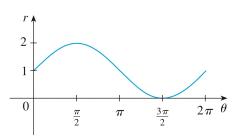
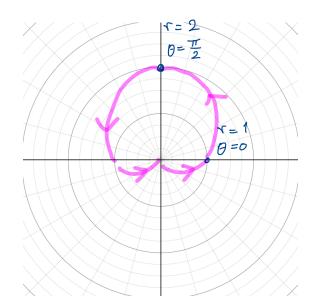


FIGURE 10 $r = 1 + \sin \theta$ in Cartesian coordinates, $0 \le \theta \le 2\pi$



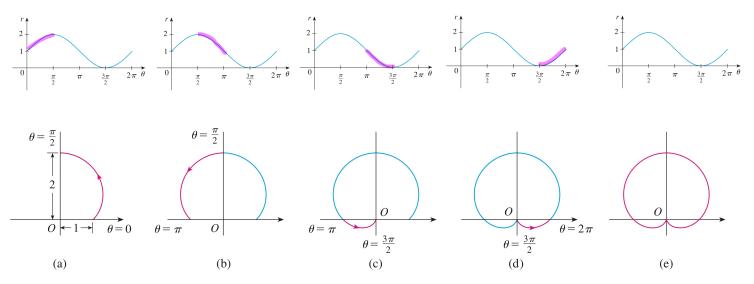
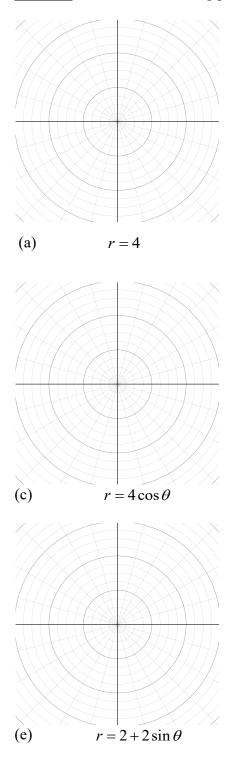
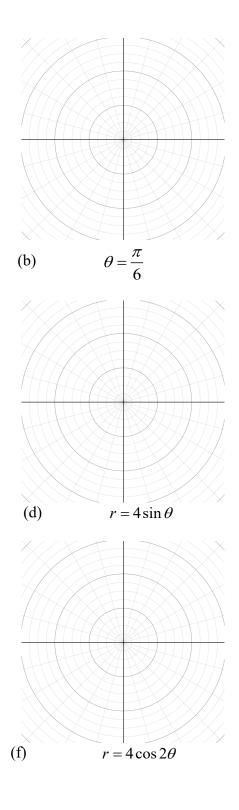


FIGURE 11 Stages in sketching the cardioid $r = 1 + \sin \theta$

The graph of a polar equation $r = f(\theta)$ consists of all points *P* that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

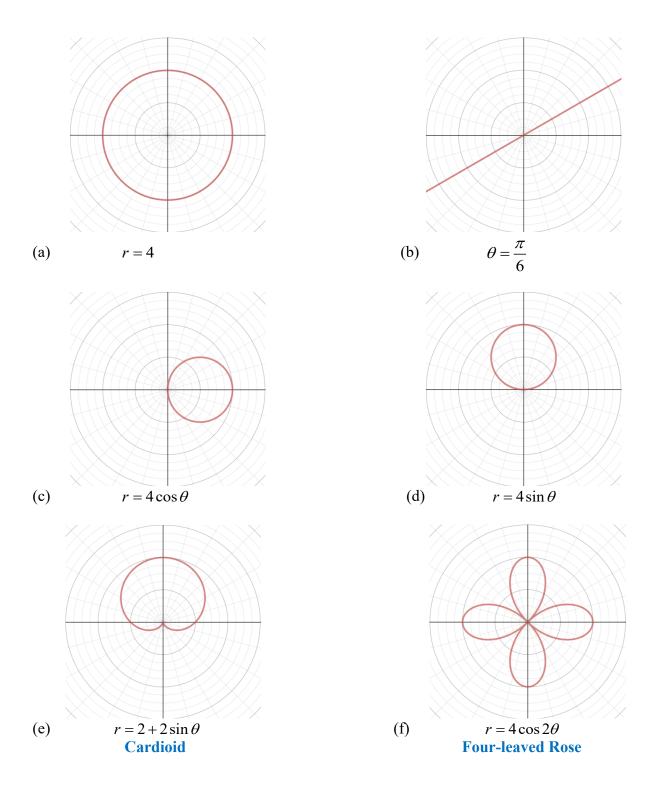
Exercise Sketch the following polar equations.





The graph of a polar equation $r = f(\theta)$ consists of all points *P* that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Exercise (Answer Key) Sketch the following polar equations.



Example polar equation For the cardioid $r = 1 + \sin \theta$ of Example 7, find the slope of the tangent line when $\theta = \pi/3$. Solution $x = r \cos \theta = (1 + \sin \theta) \cos \theta = \cos \theta + \frac{1}{2} \sin 2\theta$ $y = r \sin \theta = (1 + \sin \theta) \sin \theta = \sin \theta + \sin^2 \theta$ Then we have Sec 10.2 $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\cos \theta + 2 \sin \theta \cos \theta}{-\sin \theta + \cos 2\theta} = \frac{\cos \theta + \sin 2\theta}{-\sin \theta + \cos 2\theta}$

The slope of the tangent at the point where $\theta = \pi/3$ is

$$\frac{dy}{dx}\Big|_{\theta=\frac{\pi}{3}} = \frac{\cos\left(\frac{\pi}{3}\right) + \sin\left(\frac{2\pi}{3}\right)}{-\sin\left(\frac{\pi}{3}\right) + \cos\left(\frac{2\pi}{3}\right)} = \frac{\frac{1}{2} + \frac{\sqrt{3}}{2}}{-\frac{\sqrt{3}}{2} - \frac{1}{2}} = -1$$