Polar Coordinates

(In Multivariable Calculus: polar coordinates \rightarrow cylindrical and spherical coordinates in 3D)
Instead of using horizontal distance and vertical distance from the axes, we use the distance from the origin (radius) as well as the corresponding angle to express a given point.

- The origin is called the pole.
- The positive x-axis is called the polar axis.
- The polar coordinates for a point P have the form (r, θ), where \ldots
- $\quad r$ is the distance from the origin to P, and
- $\quad \theta$ is an angle starting from the positive x-axis and ending on the ray that passes through the pole and the point P. polar axis
- Positive angles are measured counterclockwise from the positive x-axis.

Caution (Webwork Problem 1)
The representation for a given point is not unique in the polar coordinate system.

$$
(r, \theta), \underbrace{(r, \theta+\underbrace{2 n \pi})}_{\text {any even multiple of } \pi} \underbrace{}_{\text {changing angle by }} 180^{\circ}
$$

The origin is specified as $(0, \theta)$ in polar coordinates, where θ is any angle.

$$
\begin{aligned}
& \cos (\pi+\theta)=-\cos (\theta) \\
& \sin (\pi+\theta)=-\sin (\theta)
\end{aligned}
$$

$$
5 \frac{\pi}{4}=\pi+\frac{\pi}{4}
$$

Find other representations for the same point (Webwork Problem 1):
Graph the point $\left(1, \frac{5 \pi}{4}\right)$ in polar coordinates. Give tor alternative representations for the point.
four

$$
\frac{-\sqrt{2}}{2}=\frac{\cos \left(\frac{5 \pi}{4}\right) \underbrace{\theta=\pi+\frac{\pi}{4}}_{-\frac{\sqrt{2}}{2}=\sin \left(\frac{5 \pi}{4}\right)}}{} \quad\left(1, \frac{5 \pi}{4}+2 \pi\right),\left(1, \frac{5 \pi}{4}-2 \pi\right)
$$

Converting Between Cartesian and Polar Coordinates

Procedure Converting Coordinates
A point with polar coordinates (r, θ) has Cartesian coordinates (x, y), where

$$
x=\binom{\text { horizontal }}{\text { distance }}=r \cos \theta, \quad y=\binom{\text { vertical }}{\text { distance }}=r \sin \theta
$$

A point with Cartesian coordinates (x, y) has polar coordinates (r, θ), where

$$
r=\binom{\text { distance }}{\text { from pole }}=\sqrt{x^{2}+y^{2}}, \quad \theta=\binom{\operatorname{angle} \text { from }}{\text { polar axis }}=\arctan \left(\frac{y}{x}\right)
$$

Polar to Cartesian (Webwork Problem 2): $r \theta$
Express the point with polar coordinates $\left(2, \frac{3 \pi}{4}\right)$ in Cartesian coordinates.
$x=r \cos \theta=2 \cos \frac{3 \pi}{4}=-\sqrt{2}$
$y=r \sin \theta=2 \sin \frac{3 \pi}{4}=\sqrt{2}$
Answer: $(-\sqrt{2}, \sqrt{2})$
Cartesian to polar (Webwork Problem 4):

Express the point with Cartesian coordinates $(1,-1)$ in polar coordinates.
$r=\sqrt{x^{2}+y^{2}}=\sqrt{1+1}=\sqrt{2}$
$\theta=-\frac{\pi}{4}$ or $-\frac{\pi}{4}+2 n \pi$
(from picture or compute $\theta=\arctan \left(\frac{-1}{1}\right)=-\frac{\pi}{4}$)

Converting Between Cartesian and Polar Equations

A curve in polar coordinates is the set of points that satisfy an equation in r and θ. Some sets of points are easier to describe in polar coordinates than in Cartesian coordinates.

Examples:

polar equation $r=3$

polar equation $\theta=\frac{\pi}{4}$

polar equation $r=\theta$
(Graph with Desmos: https://www.desmos.com/calculator/j6ha36k9zi)
Polar to Cartesian (Webwork Problem 10):
Convert the polar equation $r=8 \sin \theta$ to a Cartesian equation.
page 2: $x=r \cos \theta, y=r \sin \theta \Longleftrightarrow \frac{y}{r}=\sin \theta$
Plug in $\frac{y}{r}=\sin \theta$ into $r=8 \sin \theta: \quad r=8 \frac{y}{r} \Longleftrightarrow r^{2}=8 y$ page 2: $r^{2}=x^{2}+y^{2}$
Plug in $r^{2}=x^{2}+y^{2}$ into $r^{2}=8 y$:
$x^{2}+y^{2}=8 y \Rightarrow \begin{aligned} & x^{2}+y^{2}-8 y=0 \\ & x^{2}+y^{2}-8 y+4^{2}=4^{2} \\ & x^{2}+(y-4)^{2}=4^{2}\end{aligned}$
Polar to Cartesian (Webwork Problem 13):
Convert the polar equation $r \cos \theta=-4$ to a Cartesian equation.
page 2: $x=r \cos \theta$
Plug in $x=r \cos \theta$ into $r \cos \theta=-4: x=-4$

Cartesian to polar equation (Webwork Problem 9):
Convert the Cartesian equation $x^{2}\left(x^{2}+y^{2}\right)=4 y^{2}$ to a polar equation.

$$
\begin{aligned}
& \text { page 2: } r^{2}=x^{2}+y^{2} \\
& \text { Plug into } x^{2}\left(x^{2}+y^{2}\right)=4 y^{2}: x^{2} r^{2}=4 y^{2} \\
& \text { page 2: } x=r \cos \theta, y=r \sin \theta \\
& \text { Plug into } x^{2} r^{2}=4 y^{2}: r^{2}(\cos \theta)^{2} r^{2}=4 r^{2}(\sin \theta)^{2} \\
& r^{2}=4(\tan \theta)^{2} \\
& r
\end{aligned}
$$

Graphing in Polar Coordinates

Sketch the polar equation $r=1+\sin \theta$.

FIGURE 10
$r=1+\sin \theta$ in Cartesian coordinates, $0 \leqslant \theta \leqslant 2 \pi$

(a)

(b)

(c)

(d)

(e)

FIGURE 11 Stages in sketching the cardioid $r=1+\sin \theta$

The graph of a polar equation $r=f(\theta)$ consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Exercise Sketch the following polar equations.

(a) $\quad r=4$

(c) $\quad r=4 \cos \theta$

(b) $\quad \theta=\frac{\pi}{6}$

(d) $\quad r=4 \sin \theta$

The graph of a polar equation $r=f(\theta)$ consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Exercise (Answer Key) Sketch the following polar equations.

(a)
$r=4$
(b)
$\theta=\frac{\pi}{6}$

c) $\quad r=4 \cos \theta$
(c)

(e)

$$
r=2+2 \sin \theta
$$ Cardioid

(f)

Recall tangents from $\sec 10.2$

Example polar equation
For the cardioid $r=1+\sin \theta$ of Example 7, find the slope of the tangent line when $\theta=\pi / 3$.

Solution

$$
\begin{aligned}
& \text { 3. } \\
& x=r \cos \theta \stackrel{\rightharpoonup}{=} \overbrace{(1+\sin \theta}^{r}) \cos \theta=\cos \theta+\frac{1}{2} \sin 2 \theta \\
& y=r \sin \theta \stackrel{\rightharpoonup}{=} \underbrace{1+\sin \theta)}_{r} \sin \theta=\sin \theta+\sin ^{2} \theta
\end{aligned}
$$

Then we have $\operatorname{Sec} 10.2$

$$
\frac{d y}{d x} \stackrel{d}{=} \frac{d y / d \theta}{d x / d \theta}=\frac{\cos \theta+2 \sin \theta \cos \theta}{-\sin \theta+\cos 2 \theta}=\frac{\cos \theta+\sin 2 \theta}{-\sin \theta+\cos 2 \theta}
$$

The slope of the tangent at the point where $\theta=\pi / 3$ is

$$
\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{3}}=\frac{\cos \left(\frac{\pi}{3}\right)+\sin \left(\frac{2 \pi}{3}\right)}{-\sin \left(\frac{\pi}{3}\right)+\cos \left(\frac{2 \pi}{3}\right)}=\frac{\frac{1}{2}+\frac{\sqrt{3}}{2}}{-\frac{\sqrt{3}}{2}-\frac{1}{2}}=-1
$$

